nm-research
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
-
-
|
|
|
4 |
- vllm
|
5 |
license: apache-2.0
|
6 |
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
@@ -66,45 +67,81 @@ vLLM also supports OpenAI-compatible serving. See the [documentation](https://do
|
|
66 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
67 |
|
68 |
|
|
|
|
|
|
|
|
|
|
|
69 |
```python
|
|
|
|
|
|
|
|
|
70 |
import argparse
|
71 |
-
from
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
-
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
89 |
|
90 |
-
# Configure the quantization algorithm and scheme
|
91 |
-
recipe = QuantizationModifier(
|
92 |
-
targets="Linear", scheme="INT8_DYNAMIC", ignore=["lm_head"]
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
-
oneshot(model=model, recipe=recipe)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
```
|
109 |
|
110 |
## Evaluation
|
|
|
1 |
---
|
2 |
tags:
|
3 |
+
- w8a8
|
4 |
+
- int8
|
5 |
- vllm
|
6 |
license: apache-2.0
|
7 |
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
|
|
67 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
|
69 |
|
70 |
+
```bash
|
71 |
+
python quantize.py --model_path ibm-granite/granite-3.1-8b-instruct --quant_path "output_dir/granite-3.1-8b-instruct-quantized.w8a8" --calib_size 3072 --dampening_frac 0.1 --observer mse
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
```python
|
76 |
+
from datasets import load_dataset
|
77 |
+
from transformers import AutoTokenizer
|
78 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
79 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
|
80 |
import argparse
|
81 |
+
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
|
82 |
+
|
83 |
+
|
84 |
+
parser = argparse.ArgumentParser()
|
85 |
+
parser.add_argument('--model_path', type=str)
|
86 |
+
parser.add_argument('--quant_path', type=str)
|
87 |
+
parser.add_argument('--calib_size', type=int, default=256)
|
88 |
+
parser.add_argument('--dampening_frac', type=float, default=0.1)
|
89 |
+
parser.add_argument('--observer', type=str, default="minmax")
|
90 |
+
args = parser.parse_args()
|
91 |
+
|
92 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
93 |
+
args.model_path,
|
94 |
+
device_map="auto",
|
95 |
+
torch_dtype="auto",
|
96 |
+
use_cache=False,
|
97 |
+
trust_remote_code=True,
|
98 |
+
)
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
100 |
+
|
101 |
+
|
102 |
+
NUM_CALIBRATION_SAMPLES = args.calib_size
|
103 |
+
DATASET_ID = "garage-bAInd/Open-Platypus"
|
104 |
+
DATASET_SPLIT = "train"
|
105 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
106 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
107 |
+
|
108 |
+
def preprocess(example):
|
109 |
+
concat_txt = example["instruction"] + "\n" + example["output"]
|
110 |
+
return {"text": concat_txt}
|
111 |
+
|
112 |
+
ds = ds.map(preprocess)
|
113 |
+
|
114 |
+
def tokenize(sample):
|
115 |
+
return tokenizer(
|
116 |
+
sample["text"],
|
117 |
+
padding=False,
|
118 |
+
truncation=False,
|
119 |
+
add_special_tokens=True,
|
120 |
)
|
|
|
121 |
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
|
|
124 |
|
125 |
+
recipe = [
|
126 |
+
GPTQModifier(
|
127 |
+
targets=["Linear"],
|
128 |
+
ignore=["lm_head"],
|
129 |
+
scheme="W8A8",
|
130 |
+
dampening_frac=args.dampening_frac,
|
131 |
+
observer=args.observer,
|
132 |
+
)
|
133 |
+
]
|
134 |
+
oneshot(
|
135 |
+
model=model,
|
136 |
+
dataset=ds,
|
137 |
+
recipe=recipe,
|
138 |
+
num_calibration_samples=args.calib_size,
|
139 |
+
max_seq_length=8192,
|
140 |
+
)
|
141 |
+
|
142 |
+
# Save to disk compressed.
|
143 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
144 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
145 |
```
|
146 |
|
147 |
## Evaluation
|