--- tags: - w8a8 - int8 - vllm license: apache-2.0 license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: ibm-granite/granite-3.1-8b-instruct library_name: transformers --- # granite-3.1-8b-instruct-quantized.w8a8 ## Model Overview - **Model Architecture:** granite-3.1-8b-instruct - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Activation quantization:** INT8 - **Release Date:** 1/8/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct). It achieves an average score of 70.26 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 70.30. ### Model Optimizations This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 4096, 1 model_name = "neuralmagic-ent/granite-3.1-8b-instruct-quantized.w8a8" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```bash python quantize.py --model_path ibm-granite/granite-3.1-8b-instruct --quant_path "output_dir/granite-3.1-8b-instruct-quantized.w8a8" --calib_size 3072 --dampening_frac 0.1 --observer mse ``` ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import oneshot, apply import argparse from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--quant_path', type=str) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.1) parser.add_argument('--observer', type=str, default="minmax") args = parser.parse_args() model = AutoModelForCausalLM.from_pretrained( args.model_path, device_map="auto", torch_dtype="auto", use_cache=False, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(args.model_path) NUM_CALIBRATION_SAMPLES = args.calib_size DATASET_ID = "neuralmagic/LLM_compression_calibration" DATASET_SPLIT = "train" ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): concat_txt = example["instruction"] + "\n" + example["output"] return {"text": concat_txt} ds = ds.map(preprocess) def tokenize(sample): return tokenizer( sample["text"], padding=False, truncation=False, add_special_tokens=True, ) ds = ds.map(tokenize, remove_columns=ds.column_names) ignore=["lm_head"] mappings=[ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], [["re:.*down_proj"], "re:.*up_proj"] ] recipe = [ SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore, mappings=mappings), GPTQModifier( targets=["Linear"], ignore=["lm_head"], scheme="W8A8", dampening_frac=args.dampening_frac, observer=args.observer, ) ] oneshot( model=model, dataset=ds, recipe=recipe, num_calibration_samples=args.calib_size, max_seq_length=8196, ) # Save to disk compressed. model.save_pretrained(SAVE_DIR, save_compressed=True) tokenizer.save_pretrained(SAVE_DIR) ``` ## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands: OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` #### HumanEval ##### Generation ``` python3 codegen/generate.py \ --model neuralmagic-ent/granite-3.1-8b-instruct-quantized.w8a8 \ --bs 16 \ --temperature 0.2 \ --n_samples 50 \ --root "." \ --dataset humaneval ``` ##### Sanitization ``` python3 evalplus/sanitize.py \ humaneval/neuralmagic-ent--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2 ``` ##### Evaluation ``` evalplus.evaluate \ --dataset humaneval \ --samples humaneval/neuralmagic-ent--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized ``` ### Accuracy #### OpenLLM Leaderboard V1 evaluation scores | Metric | ibm-granite/granite-3.1-8b-instruct | neuralmagic-ent/granite-3.1-8b-instruct-quantized.w8a8 | |-----------------------------------------|:---------------------------------:|:-------------------------------------------:| | ARC-Challenge (Acc-Norm, 25-shot) | 66.81 | 67.06 | | GSM8K (Strict-Match, 5-shot) | 64.52 | 65.66 | | HellaSwag (Acc-Norm, 10-shot) | 84.18 | 83.93 | | MMLU (Acc, 5-shot) | 65.52 | 65.03 | | TruthfulQA (MC2, 0-shot) | 60.57 | 60.02 | | Winogrande (Acc, 5-shot) | 80.19 | 79.87 | | **Average Score** | **70.30** | **70.26** | | **Recovery** | **100.00** | **99.95** | #### OpenLLM Leaderboard V2 evaluation scores | Metric | ibm-granite/granite-3.1-8b-instruct | neuralmagic-ent/granite-3.1-8b-instruct-quantized.w8a8 | |-----------------------------------------|:---------------------------------:|:-------------------------------------------:| | IFEval (Inst Level Strict Acc, 0-shot)| 74.01 | 73.50 | | BBH (Acc-Norm, 3-shot) | 53.19 | 52.59 | | Math-Hard (Exact-Match, 4-shot) | 14.77 | 15.73 | | GPQA (Acc-Norm, 0-shot) | 31.76 | 30.62 | | MUSR (Acc-Norm, 0-shot) | 46.01 | 44.30 | | MMLU-Pro (Acc, 5-shot) | 35.81 | 35.41 | | **Average Score** | **42.61** | **42.03** | | **Recovery** | **100.00** | **98.64** | #### HumanEval pass@1 scores | Metric | ibm-granite/granite-3.1-8b-instruct | neuralmagic-ent/granite-3.1-8b-instruct-quantized.w8a8 | |-----------------------------------------|:---------------------------------:|:-------------------------------------------:| | HumanEval Pass@1 | 71.00 | 70.50 | ## Inference Performance This model achieves up to 1.6x speedup in single-stream deployment and up to 1.7x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm). ### Single-stream performance (measured with vLLM version 0.6.6.post1)
Latency (s) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
A5000 | granite-3.1-8b-instruct | 28.3 | 3.7 | 28.8 | 3.8 | 3.6 | 7.2 | 15.7 | |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.60 | 17.7 | 2.3 | 18.0 | 2.4 | 2.2 | 4.5 | 10.0 | |
granite-3.1-8b-instruct-quantized.w4a16 | 2.61 | 10.3 | 1.5 | 10.7 | 1.5 | 1.3 | 2.7 | 6.6 | |
A6000 | granite-3.1-8b-instruct | 25.8 | 3.4 | 26.2 | 3.4 | 3.3 | 6.5 | 14.2 | |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.50 | 17.4 | 2.3 | 16.9 | 2.2 | 2.2 | 4.4 | 9.8 | |
granite-3.1-8b-instruct-quantized.w4a16 | 2.48 | 10.0 | 1.4 | 10.4 | 1.5 | 1.3 | 2.5 | 6.2 | |
A100 | granite-3.1-8b-instruct | 13.6 | 1.8 | 13.7 | 1.8 | 1.7 | 3.4 | 7.3 | |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.31 | 10.4 | 1.3 | 10.5 | 1.4 | 1.3 | 2.6 | 5.6 | |
granite-3.1-8b-instruct-quantized.w4a16 | 1.80 | 7.3 | 1.0 | 7.4 | 1.0 | 0.9 | 1.9 | 4.3 |
Maximum Throughput (Queries per Second) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
A5000 | granite-3.1-8b-instruct | 0.8 | 3.1 | 0.4 | 2.5 | 6.7 | 2.7 | 0.3 | |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.71 | 1.3 | 5.2 | 0.9 | 4.0 | 10.5 | 4.4 | 0.5 | |
granite-3.1-8b-instruct-quantized.w4a16 | 1.46 | 1.3 | 3.9 | 0.8 | 2.9 | 8.2 | 3.6 | 0.5 | |
A6000 | granite-3.1-8b-instruct | 1.3 | 5.1 | 0.9 | 4.0 | 0.3 | 4.3 | 0.6 | |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.39 | 1.8 | 7.0 | 1.3 | 5.6 | 14.0 | 6.3 | 0.8 | |
granite-3.1-8b-instruct-quantized.w4a16 | 1.09 | 1.9 | 4.8 | 1.0 | 3.8 | 10.0 | 5.0 | 0.6 | |
A100 | granite-3.1-8b-instruct | 3.1 | 10.7 | 2.1 | 8.5 | 20.6 | 9.6 | 1.4 | |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.23 | 3.8 | 14.2 | 2.1 | 11.4 | 25.9 | 12.1 | 1.7 | |
granite-3.1-8b-instruct-quantized.w4a16 | 0.96 | 3.4 | 9.0 | 2.6 | 7.2 | 18.0 | 8.8 | 1.3 |