File size: 1,668 Bytes
ed7c12a 6d58a47 43ac872 6d58a47 43ac872 6d58a47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
tags:
- bert
- oBERT
- sparsity
- pruning
- compression
language: en
datasets: qqp
---
# oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp-v2
This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259).
It corresponds to the model presented in the `Table 2 - oBERT - QQP 97%` (in the upcoming updated version of the paper).
```
Pruning method: oBERT upstream unstructured + sparse-transfer to downstream
Paper: https://arxiv.org/abs/2203.07259
Dataset: QQP
Sparsity: 97%
Number of layers: 12
```
The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`):
```
| oBERT 97% | acc | F1 |
| ------------ | ----- | ----- |
| seed=42 (*)| 90.42 | 87.09 |
| seed=3407 | 90.31 | 86.87 |
| seed=123 | 90.20 | 86.76 |
| seed=12345 | 90.39 | 87.16 |
| ------------ | ----- | ----- |
| mean | 90.33 | 86.97 |
| stdev | 0.098 | 0.186 |
```
Code: [https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT](https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT)
If you find the model useful, please consider citing our work.
## Citation info
```bibtex
@article{kurtic2022optimal,
title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
journal={arXiv preprint arXiv:2203.07259},
year={2022}
}
``` |