PerryCheng614
commited on
Commit
•
8cb1299
1
Parent(s):
5ef88f3
Upload inference script
Browse files- bert_inference.py +63 -0
bert_inference.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class BertInference:
|
5 |
+
def __init__(self, model_path):
|
6 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_path).to(self.device)
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
9 |
+
# self.tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
|
10 |
+
self.label_map = {
|
11 |
+
0: "query_with_pdf",
|
12 |
+
1: "summarize_pdf",
|
13 |
+
2: "query_metadata"
|
14 |
+
}
|
15 |
+
|
16 |
+
def predict(self, text):
|
17 |
+
# Tokenize
|
18 |
+
inputs = self.tokenizer(
|
19 |
+
text,
|
20 |
+
return_tensors="pt"
|
21 |
+
).to(self.device)
|
22 |
+
|
23 |
+
# Get prediction
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = self.model(**inputs)
|
26 |
+
predictions = torch.softmax(outputs.logits, dim=1)
|
27 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
28 |
+
confidence = predictions[0][predicted_class].item()
|
29 |
+
|
30 |
+
return {
|
31 |
+
"predicted_class": self.label_map[predicted_class],
|
32 |
+
"confidence": confidence,
|
33 |
+
"all_probabilities": {
|
34 |
+
self.label_map[i]: prob.item()
|
35 |
+
for i, prob in enumerate(predictions[0])
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
def main():
|
40 |
+
# Initialize the model
|
41 |
+
model_path = "output_dir_decision" # Path to your saved model
|
42 |
+
# model_path = "output_xlm_roberta_bert"
|
43 |
+
inferencer = BertInference(model_path)
|
44 |
+
|
45 |
+
# Example usage
|
46 |
+
test_questions = [
|
47 |
+
"What is television",
|
48 |
+
"What is the summary",
|
49 |
+
"What is GPU",
|
50 |
+
"What is the title of this pdf?"
|
51 |
+
]
|
52 |
+
|
53 |
+
for question in test_questions:
|
54 |
+
result = inferencer.predict(question)
|
55 |
+
print(f"\nQuestion: {question}")
|
56 |
+
print(f"Predicted Class: {result['predicted_class']}")
|
57 |
+
print(f"Confidence: {result['confidence']:.4f}")
|
58 |
+
print("All Probabilities:")
|
59 |
+
for class_name, prob in result['all_probabilities'].items():
|
60 |
+
print(f" {class_name}: {prob:.4f}")
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
main()
|