--- tags: - generated_from_trainer datasets: - google/boolq metrics: - accuracy base_model: nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large model-index: - name: MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq results: - task: type: text-classification name: Text Classification dataset: name: boolq type: boolq config: default split: validation args: default metrics: - type: accuracy value: 0.7379204892966361 name: Accuracy --- # MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large) on the boolq dataset. It achieves the following results on the evaluation set: - Loss: 0.5417 - Accuracy: 0.7379 ## Inference Example ``` import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nfliu/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq") tokenizer = AutoTokenizer.from_pretrained("nfliu/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq") # Each example is a (question, context) pair. examples = [ ("Lake Tahoe is in California", "Lake Tahoe is a popular tourist spot in California."), ("Water is wet", "Contrary to popular belief, water is not wet.") ] encoded_input = tokenizer(examples, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): model_output = model(**encoded_input) probabilities = torch.softmax(model_output.logits, dim=-1).cpu().tolist() probability_no = [round(prob[0], 2) for prob in probabilities] probability_yes = [round(prob[1], 2) for prob in probabilities] for example, p_no, p_yes in zip(examples, probability_no, probability_yes): print(f"Question: {example[0]}") print(f"Context: {example[1]}") print(f"p(No | question, context): {p_no}") print(f"p(Yes | question, context): {p_yes}") print() ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.85 | 250 | 0.6579 | 0.6190 | | 0.6352 | 1.69 | 500 | 0.5907 | 0.6841 | | 0.6352 | 2.54 | 750 | 0.5613 | 0.7196 | | 0.535 | 3.39 | 1000 | 0.5444 | 0.7373 | | 0.535 | 4.24 | 1250 | 0.5417 | 0.7379 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3