Add usage example
Browse files
README.md
CHANGED
@@ -35,6 +35,38 @@ It achieves the following results on the evaluation set:
|
|
35 |
- Loss: 0.6057
|
36 |
- Accuracy: 0.8569
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
## Model description
|
39 |
|
40 |
More information needed
|
|
|
35 |
- Loss: 0.6057
|
36 |
- Accuracy: 0.8569
|
37 |
|
38 |
+
## Example
|
39 |
+
|
40 |
+
```
|
41 |
+
import torch
|
42 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
43 |
+
|
44 |
+
model = AutoModelForSequenceClassification.from_pretrained("nfliu/roberta-large_boolq")
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("nfliu/roberta-large_boolq")
|
46 |
+
|
47 |
+
# Each example is a (question, context) pair.
|
48 |
+
examples = [
|
49 |
+
("Lake Tahoe is in California", "Lake Tahoe is a popular tourist spot in California."),
|
50 |
+
("Water is wet", "Contrary to popular belief, water is not wet.")
|
51 |
+
]
|
52 |
+
|
53 |
+
encoded_input = tokenizer(examples, padding=True, truncation=True, return_tensors="pt")
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
model_output = model(**encoded_input)
|
57 |
+
probabilities = torch.softmax(model_output.logits, dim=-1).cpu().tolist()
|
58 |
+
|
59 |
+
probability_no = [round(prob[0], 2) for prob in probabilities]
|
60 |
+
probability_yes = [round(prob[1], 2) for prob in probabilities]
|
61 |
+
|
62 |
+
for example, p_no, p_yes in zip(examples, probability_no, probability_yes):
|
63 |
+
print(f"Question: {example[0]}")
|
64 |
+
print(f"Context: {example[1]}")
|
65 |
+
print(f"p(No | question, context): {p_no}")
|
66 |
+
print(f"p(Yes | question, context): {p_yes}")
|
67 |
+
print()
|
68 |
+
```
|
69 |
+
|
70 |
## Model description
|
71 |
|
72 |
More information needed
|