# ERNIE-2.0-large ## Introduction ERNIE 2.0 is a continual pre-training framework proposed by Baidu in 2019, which builds and learns incrementally pre-training tasks through constant multi-task learning. Experimental results demonstrate that ERNIE 2.0 outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several common tasks in Chinese. More detail: https://arxiv.org/abs/1907.12412 ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |ernie-2.0-large-en| English |Layer:24, Hidden:1024, Heads:16| This released pytorch model is converted from the officially released PaddlePaddle ERNIE model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle ERNIE repo: https://github.com/PaddlePaddle/ERNIE - Pytorch Conversion repo: https://github.com/nghuyong/ERNIE-Pytorch ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-large-en") model = AutoModel.from_pretrained("nghuyong/ernie-2.0-large-en") ``` ## Citation ```bibtex @article{sun2019ernie20, title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding}, author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:1907.12412}, year={2019} } ```