nguyenkhoa2407 commited on
Commit
dc40753
1 Parent(s): aa7e574

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - favsbot
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: camembert-base-NER-favsbot
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: favsbot
20
+ type: favsbot
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.6
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.012145748987854251
31
+ - name: F1
32
+ type: f1
33
+ value: 0.023809523809523808
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.42078364565587734
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # camembert-base-NER-favsbot
43
+
44
+ This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the favsbot dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 1.7433
47
+ - Precision: 0.6
48
+ - Recall: 0.0121
49
+ - F1: 0.0238
50
+ - Accuracy: 0.4208
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1.5e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 20
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 4 | 2.2915 | 0.1364 | 0.1215 | 0.1285 | 0.3475 |
82
+ | No log | 2.0 | 8 | 2.2230 | 0.2909 | 0.0648 | 0.1060 | 0.4395 |
83
+ | No log | 3.0 | 12 | 2.1573 | 0.4545 | 0.0202 | 0.0388 | 0.4225 |
84
+ | No log | 4.0 | 16 | 2.0961 | 0.0 | 0.0 | 0.0 | 0.4123 |
85
+ | No log | 5.0 | 20 | 2.0426 | 0.0 | 0.0 | 0.0 | 0.4123 |
86
+ | No log | 6.0 | 24 | 1.9965 | 0.0 | 0.0 | 0.0 | 0.4123 |
87
+ | No log | 7.0 | 28 | 1.9575 | 0.0 | 0.0 | 0.0 | 0.4123 |
88
+ | No log | 8.0 | 32 | 1.9233 | 0.0 | 0.0 | 0.0 | 0.4123 |
89
+ | No log | 9.0 | 36 | 1.8933 | 0.0 | 0.0 | 0.0 | 0.4123 |
90
+ | No log | 10.0 | 40 | 1.8674 | 0.0 | 0.0 | 0.0 | 0.4123 |
91
+ | No log | 11.0 | 44 | 1.8441 | 0.0 | 0.0 | 0.0 | 0.4123 |
92
+ | No log | 12.0 | 48 | 1.8240 | 0.0 | 0.0 | 0.0 | 0.4123 |
93
+ | No log | 13.0 | 52 | 1.8060 | 1.0 | 0.0040 | 0.0081 | 0.4140 |
94
+ | No log | 14.0 | 56 | 1.7899 | 1.0 | 0.0040 | 0.0081 | 0.4140 |
95
+ | No log | 15.0 | 60 | 1.7762 | 1.0 | 0.0040 | 0.0081 | 0.4140 |
96
+ | No log | 16.0 | 64 | 1.7647 | 0.5 | 0.0040 | 0.0080 | 0.4157 |
97
+ | No log | 17.0 | 68 | 1.7556 | 0.5 | 0.0040 | 0.0080 | 0.4157 |
98
+ | No log | 18.0 | 72 | 1.7490 | 0.6667 | 0.0081 | 0.016 | 0.4174 |
99
+ | No log | 19.0 | 76 | 1.7449 | 0.75 | 0.0121 | 0.0239 | 0.4191 |
100
+ | No log | 20.0 | 80 | 1.7433 | 0.6 | 0.0121 | 0.0238 | 0.4208 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.21.1
106
+ - Pytorch 1.12.1
107
+ - Datasets 2.4.0
108
+ - Tokenizers 0.12.1