|
--- |
|
license: apache-2.0 |
|
base_model: google/electra-small-discriminator |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: textmining_proj02_electra |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# textmining_proj02_electra |
|
|
|
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.0145 |
|
- Train End Logits Accuracy: 0.5186 |
|
- Train Start Logits Accuracy: 0.4898 |
|
- Validation Loss: 1.7837 |
|
- Validation End Logits Accuracy: 0.5643 |
|
- Validation Start Logits Accuracy: 0.5514 |
|
- Epoch: 10 |
|
- {'name': 'textmining_proj02_electra', |
|
'lnr': 2e-05, |
|
'epoch': 10, |
|
'batch_size': 32, |
|
'time': 14419.3888988494, |
|
'accuracy': 0.4546079779917469, |
|
'f1_score': 0.582647682404047} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |
|
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| |
|
| 3.5498 | 0.2455 | 0.2154 | 2.7762 | 0.3625 | 0.3353 | 0 | |
|
| 2.7913 | 0.3657 | 0.3291 | 2.5014 | 0.4105 | 0.3950 | 1 | |
|
| 2.5710 | 0.4032 | 0.3725 | 2.2847 | 0.4635 | 0.4409 | 2 | |
|
| 2.4125 | 0.4377 | 0.4076 | 2.1311 | 0.4904 | 0.4761 | 3 | |
|
| 2.2918 | 0.4641 | 0.4348 | 2.0155 | 0.5161 | 0.5063 | 4 | |
|
| 2.1978 | 0.4833 | 0.4512 | 1.9319 | 0.5343 | 0.5214 | 5 | |
|
| 2.1306 | 0.4960 | 0.4664 | 1.8634 | 0.5505 | 0.5352 | 6 | |
|
| 2.0801 | 0.5018 | 0.4755 | 1.8229 | 0.5568 | 0.5457 | 7 | |
|
| 2.0404 | 0.5139 | 0.4837 | 1.7963 | 0.5611 | 0.5488 | 8 | |
|
| 2.0145 | 0.5186 | 0.4898 | 1.7837 | 0.5643 | 0.5514 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|