speaker-embedding / wav2filterbank.py
nguyenvulebinh's picture
upload infer utils
fd06d88
raw
history blame contribute delete
No virus
12.4 kB
import librosa
import numpy as np
import torch
import torch.nn as nn
import logging
import math
import random
CONSTANT = 1e-5
def normalize_batch(x, seq_len, normalize_type):
x_mean = None
x_std = None
if normalize_type == "per_feature":
x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device)
x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device)
for i in range(x.shape[0]):
if x[i, :, : seq_len[i]].shape[1] == 1:
raise ValueError(
"normalize_batch with `per_feature` normalize_type received a tensor of length 1. This will result "
"in torch.std() returning nan. Make sure your audio length has enough samples for a single "
"feature (ex. at least `hop_length` for Mel Spectrograms)."
)
x_mean[i, :] = x[i, :, : seq_len[i]].mean(dim=1)
x_std[i, :] = x[i, :, : seq_len[i]].std(dim=1)
# make sure x_std is not zero
x_std += CONSTANT
return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2), x_mean, x_std
elif normalize_type == "all_features":
x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
for i in range(x.shape[0]):
x_mean[i] = x[i, :, : seq_len[i].item()].mean()
x_std[i] = x[i, :, : seq_len[i].item()].std()
# make sure x_std is not zero
x_std += CONSTANT
return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1), x_mean, x_std
elif "fixed_mean" in normalize_type and "fixed_std" in normalize_type:
x_mean = torch.tensor(normalize_type["fixed_mean"], device=x.device)
x_std = torch.tensor(normalize_type["fixed_std"], device=x.device)
return (
(x - x_mean.view(x.shape[0], x.shape[1]).unsqueeze(2)) / x_std.view(x.shape[0], x.shape[1]).unsqueeze(2),
x_mean,
x_std,
)
else:
return x, x_mean, x_std
def splice_frames(x, frame_splicing):
""" Stacks frames together across feature dim
input is batch_size, feature_dim, num_frames
output is batch_size, feature_dim*frame_splicing, num_frames
"""
seq = [x]
for n in range(1, frame_splicing):
seq.append(torch.cat([x[:, :, :n], x[:, :, n:]], dim=2))
return torch.cat(seq, dim=1)
class FilterbankFeatures(nn.Module):
"""Featurizer that converts wavs to Mel Spectrograms.
See AudioToMelSpectrogramPreprocessor for args.
"normalize": "per_feature",
"window_size": 0.025,
"sample_rate": 16000,
"window_stride": 0.01,
"window": "hann",
"features": 80,
"n_fft": 512,
"frame_splicing": 1,
"dither": 1e-05
n_window_size=window_size * sample_rate,
n_window_stride = window_stride * sample_rate,
"""
def __init__(
self,
sample_rate=16000,
n_window_size=400,
n_window_stride=160,
window="hann",
normalize="per_feature",
n_fft=512,
preemph=0.97,
nfilt=80,
lowfreq=0,
highfreq=None,
log=True,
log_zero_guard_type="add",
log_zero_guard_value=2 ** -24,
dither=CONSTANT,
pad_to=16,
max_duration=16.7,
frame_splicing=1,
exact_pad=False,
pad_value=0,
mag_power=2.0,
use_grads=False,
rng=None,
nb_augmentation_prob=0.0,
nb_max_freq=4000,
stft_exact_pad=False, # Deprecated arguments; kept for config compatibility
stft_conv=False, # Deprecated arguments; kept for config compatibility
):
super().__init__()
if stft_conv or stft_exact_pad:
logging.warning(
"Using torch_stft is deprecated and has been removed. The values have been forcibly set to False "
"for FilterbankFeatures and AudioToMelSpectrogramPreprocessor. Please set exact_pad to True "
"as needed."
)
if exact_pad and n_window_stride % 2 == 1:
raise NotImplementedError(
f"{self} received exact_pad == True, but hop_size was odd. If audio_length % hop_size == 0. Then the "
"returned spectrogram would not be of length audio_length // hop_size. Please use an even hop_size."
)
self.log_zero_guard_value = log_zero_guard_value
if (
n_window_size is None
or n_window_stride is None
or not isinstance(n_window_size, int)
or not isinstance(n_window_stride, int)
or n_window_size <= 0
or n_window_stride <= 0
):
raise ValueError(
f"{self} got an invalid value for either n_window_size or "
f"n_window_stride. Both must be positive ints."
)
logging.info(f"PADDING: {pad_to}")
self.win_length = n_window_size
self.hop_length = n_window_stride
self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))
self.stft_pad_amount = (self.n_fft - self.hop_length) // 2 if exact_pad else None
if exact_pad:
logging.info("STFT using exact pad")
torch_windows = {
'hann': torch.hann_window,
'hamming': torch.hamming_window,
'blackman': torch.blackman_window,
'bartlett': torch.bartlett_window,
'none': None,
}
window_fn = torch_windows.get(window, None)
window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None
self.register_buffer("window", window_tensor)
self.stft = lambda x: torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
center=False if exact_pad else True,
window=self.window.to(dtype=torch.float),
return_complex=True,
)
self.normalize = normalize
self.log = log
self.dither = dither
self.frame_splicing = frame_splicing
self.nfilt = nfilt
self.preemph = preemph
self.pad_to = pad_to
highfreq = highfreq or sample_rate / 2
filterbanks = torch.tensor(
librosa.filters.mel(sr=sample_rate, n_fft=self.n_fft, n_mels=nfilt, fmin=lowfreq, fmax=highfreq),
dtype=torch.float,
).unsqueeze(0)
self.register_buffer("fb", filterbanks)
# Calculate maximum sequence length
max_length = self.get_seq_len(torch.tensor(max_duration * sample_rate, dtype=torch.float))
max_pad = pad_to - (max_length % pad_to) if pad_to > 0 else 0
self.max_length = max_length + max_pad
self.pad_value = pad_value
self.mag_power = mag_power
# We want to avoid taking the log of zero
# There are two options: either adding or clamping to a small value
if log_zero_guard_type not in ["add", "clamp"]:
raise ValueError(
f"{self} received {log_zero_guard_type} for the "
f"log_zero_guard_type parameter. It must be either 'add' or "
f"'clamp'."
)
self.use_grads = use_grads
if not use_grads:
self.forward = torch.no_grad()(self.forward)
self._rng = random.Random() if rng is None else rng
self.nb_augmentation_prob = nb_augmentation_prob
if self.nb_augmentation_prob > 0.0:
if nb_max_freq >= sample_rate / 2:
self.nb_augmentation_prob = 0.0
else:
self._nb_max_fft_bin = int((nb_max_freq / sample_rate) * n_fft)
# log_zero_guard_value is the the small we want to use, we support
# an actual number, or "tiny", or "eps"
self.log_zero_guard_type = log_zero_guard_type
logging.debug(f"sr: {sample_rate}")
logging.debug(f"n_fft: {self.n_fft}")
logging.debug(f"win_length: {self.win_length}")
logging.debug(f"hop_length: {self.hop_length}")
logging.debug(f"n_mels: {nfilt}")
logging.debug(f"fmin: {lowfreq}")
logging.debug(f"fmax: {highfreq}")
logging.debug(f"using grads: {use_grads}")
logging.debug(f"nb_augmentation_prob: {nb_augmentation_prob}")
def log_zero_guard_value_fn(self, x):
if isinstance(self.log_zero_guard_value, str):
if self.log_zero_guard_value == "tiny":
return torch.finfo(x.dtype).tiny
elif self.log_zero_guard_value == "eps":
return torch.finfo(x.dtype).eps
else:
raise ValueError(
f"{self} received {self.log_zero_guard_value} for the "
f"log_zero_guard_type parameter. It must be either a "
f"number, 'tiny', or 'eps'"
)
else:
return self.log_zero_guard_value
def get_seq_len(self, seq_len):
# Assuming that center is True is stft_pad_amount = 0
pad_amount = self.stft_pad_amount * 2 if self.stft_pad_amount is not None else self.n_fft // 2 * 2
seq_len = torch.floor((seq_len + pad_amount - self.n_fft) / self.hop_length) + 1
return seq_len.to(dtype=torch.long)
@property
def filter_banks(self):
return self.fb
def forward(self, x, seq_len, linear_spec=False):
seq_len = self.get_seq_len(seq_len.float())
if self.stft_pad_amount is not None:
x = torch.nn.functional.pad(
x.unsqueeze(1), (self.stft_pad_amount, self.stft_pad_amount), "reflect"
).squeeze(1)
# dither (only in training mode for eval determinism)
if self.training and self.dither > 0:
x += self.dither * torch.randn_like(x)
# do preemphasis
if self.preemph is not None:
x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1)
# disable autocast to get full range of stft values
with torch.cuda.amp.autocast(enabled=False):
x = self.stft(x)
# torch stft returns complex tensor (of shape [B,N,T]); so convert to magnitude
# guard is needed for sqrt if grads are passed through
guard = 0 if not self.use_grads else CONSTANT
x = torch.view_as_real(x)
x = torch.sqrt(x.pow(2).sum(-1) + guard)
if self.training and self.nb_augmentation_prob > 0.0:
for idx in range(x.shape[0]):
if self._rng.random() < self.nb_augmentation_prob:
x[idx, self._nb_max_fft_bin :, :] = 0.0
# get power spectrum
if self.mag_power != 1.0:
x = x.pow(self.mag_power)
# return plain spectrogram if required
if linear_spec:
return x, seq_len
# dot with filterbank energies
x = torch.matmul(self.fb.to(x.dtype), x)
# log features if required
if self.log:
if self.log_zero_guard_type == "add":
x = torch.log(x + self.log_zero_guard_value_fn(x))
elif self.log_zero_guard_type == "clamp":
x = torch.log(torch.clamp(x, min=self.log_zero_guard_value_fn(x)))
else:
raise ValueError("log_zero_guard_type was not understood")
# frame splicing if required
if self.frame_splicing > 1:
x = splice_frames(x, self.frame_splicing)
# normalize if required
if self.normalize:
x, _, _ = normalize_batch(x, seq_len, normalize_type=self.normalize)
# mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency)
max_len = x.size(-1)
mask = torch.arange(max_len).to(x.device)
mask = mask.repeat(x.size(0), 1) >= seq_len.unsqueeze(1)
x = x.masked_fill(mask.unsqueeze(1).type(torch.bool).to(device=x.device), self.pad_value)
del mask
pad_to = self.pad_to
if pad_to == "max":
x = nn.functional.pad(x, (0, self.max_length - x.size(-1)), value=self.pad_value)
elif pad_to > 0:
pad_amt = x.size(-1) % pad_to
if pad_amt != 0:
x = nn.functional.pad(x, (0, pad_to - pad_amt), value=self.pad_value)
return x, seq_len