nhanv commited on
Commit
904bd0a
1 Parent(s): b92c6a7
.gitattributes CHANGED
@@ -1,6 +1,7 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
  *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
6
  *.ckpt filter=lfs diff=lfs merge=lfs -text
7
  *.ftz filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: cv-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # cv-ner
19
+
20
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0956
23
+ - Precision: 0.8906
24
+ - Recall: 0.9325
25
+ - F1: 0.9111
26
+ - Accuracy: 0.9851
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 91 | 0.2049 | 0.6618 | 0.7362 | 0.6970 | 0.9534 |
58
+ | 0.5036 | 2.0 | 182 | 0.1156 | 0.7873 | 0.8630 | 0.8234 | 0.9722 |
59
+ | 0.1442 | 3.0 | 273 | 0.1078 | 0.8262 | 0.9039 | 0.8633 | 0.9771 |
60
+ | 0.0757 | 4.0 | 364 | 0.1179 | 0.8652 | 0.9059 | 0.8851 | 0.9780 |
61
+ | 0.0526 | 5.0 | 455 | 0.0907 | 0.888 | 0.9080 | 0.8979 | 0.9837 |
62
+ | 0.0342 | 6.0 | 546 | 0.0972 | 0.8926 | 0.9346 | 0.9131 | 0.9832 |
63
+ | 0.0245 | 7.0 | 637 | 0.1064 | 0.8937 | 0.9284 | 0.9107 | 0.9834 |
64
+ | 0.0188 | 8.0 | 728 | 0.0965 | 0.8980 | 0.9366 | 0.9169 | 0.9850 |
65
+ | 0.0159 | 9.0 | 819 | 0.0999 | 0.91 | 0.9305 | 0.9201 | 0.9846 |
66
+ | 0.0141 | 10.0 | 910 | 0.0956 | 0.8906 | 0.9325 | 0.9111 | 0.9851 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.24.0.dev0
72
+ - Pytorch 1.12.1+cu113
73
+ - Datasets 2.6.1
74
+ - Tokenizers 0.13.1
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 250101
3
+ }
all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.985104873847401,
4
+ "eval_f1": 0.911088911088911,
5
+ "eval_loss": 0.09563781321048737,
6
+ "eval_precision": 0.890625,
7
+ "eval_recall": 0.9325153374233128,
8
+ "eval_runtime": 1.2647,
9
+ "eval_samples": 161,
10
+ "eval_samples_per_second": 127.3,
11
+ "eval_steps_per_second": 32.418,
12
+ "train_loss": 0.09724931471295409,
13
+ "train_runtime": 322.9196,
14
+ "train_samples": 1441,
15
+ "train_samples_per_second": 44.624,
16
+ "train_steps_per_second": 2.818
17
+ }
config.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mdeberta-v3-base",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "finetuning_task": "ner",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "B-ADDRESS",
13
+ "1": "B-COMPANY",
14
+ "2": "B-DOB",
15
+ "3": "B-EMAIL",
16
+ "4": "B-FULLNAME",
17
+ "5": "B-GENDER",
18
+ "6": "B-MAJOR",
19
+ "7": "B-PHONE_NUMBER",
20
+ "8": "B-POSITION",
21
+ "9": "B-SCHOOL",
22
+ "10": "B-TIME",
23
+ "11": "I-ADDRESS",
24
+ "12": "I-COMPANY",
25
+ "13": "I-DOB",
26
+ "14": "I-EMAIL",
27
+ "15": "I-FULLNAME",
28
+ "16": "I-GENDER",
29
+ "17": "I-MAJOR",
30
+ "18": "I-PHONE_NUMBER",
31
+ "19": "I-POSITION",
32
+ "20": "I-SCHOOL",
33
+ "21": "I-TIME",
34
+ "22": "O"
35
+ },
36
+ "initializer_range": 0.02,
37
+ "intermediate_size": 3072,
38
+ "label2id": {
39
+ "B-ADDRESS": 0,
40
+ "B-COMPANY": 1,
41
+ "B-DOB": 2,
42
+ "B-EMAIL": 3,
43
+ "B-FULLNAME": 4,
44
+ "B-GENDER": 5,
45
+ "B-MAJOR": 6,
46
+ "B-PHONE_NUMBER": 7,
47
+ "B-POSITION": 8,
48
+ "B-SCHOOL": 9,
49
+ "B-TIME": 10,
50
+ "I-ADDRESS": 11,
51
+ "I-COMPANY": 12,
52
+ "I-DOB": 13,
53
+ "I-EMAIL": 14,
54
+ "I-FULLNAME": 15,
55
+ "I-GENDER": 16,
56
+ "I-MAJOR": 17,
57
+ "I-PHONE_NUMBER": 18,
58
+ "I-POSITION": 19,
59
+ "I-SCHOOL": 20,
60
+ "I-TIME": 21,
61
+ "O": 22
62
+ },
63
+ "layer_norm_eps": 1e-07,
64
+ "max_position_embeddings": 512,
65
+ "max_relative_positions": -1,
66
+ "model_type": "deberta-v2",
67
+ "norm_rel_ebd": "layer_norm",
68
+ "num_attention_heads": 12,
69
+ "num_hidden_layers": 12,
70
+ "pad_token_id": 0,
71
+ "pooler_dropout": 0,
72
+ "pooler_hidden_act": "gelu",
73
+ "pooler_hidden_size": 768,
74
+ "pos_att_type": [
75
+ "p2c",
76
+ "c2p"
77
+ ],
78
+ "position_biased_input": false,
79
+ "position_buckets": 256,
80
+ "relative_attention": true,
81
+ "share_att_key": true,
82
+ "torch_dtype": "float32",
83
+ "transformers_version": "4.24.0.dev0",
84
+ "type_vocab_size": 0,
85
+ "vocab_size": 251000
86
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.985104873847401,
4
+ "eval_f1": 0.911088911088911,
5
+ "eval_loss": 0.09563781321048737,
6
+ "eval_precision": 0.890625,
7
+ "eval_recall": 0.9325153374233128,
8
+ "eval_runtime": 1.2647,
9
+ "eval_samples": 161,
10
+ "eval_samples_per_second": 127.3,
11
+ "eval_steps_per_second": 32.418
12
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5cc9b7eb748d73b8e5d1d1aa9ade4051451efbd33c0d050d45af8b8bd2553f8
3
+ size 1113017327
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c8d666d62a7bc4ac8f040aab68e942c861f93303156cc28f5c7e885d86d6e3
3
+ size 4305025
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbef9712c55ef75d0004007743c550a957b55a8f094bec9f147c42dc093ab471
3
+ size 16331566
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": false,
5
+ "eos_token": "[SEP]",
6
+ "mask_token": "[MASK]",
7
+ "name_or_path": "microsoft/mdeberta-v3-base",
8
+ "pad_token": "[PAD]",
9
+ "sep_token": "[SEP]",
10
+ "sp_model_kwargs": {},
11
+ "special_tokens_map_file": null,
12
+ "split_by_punct": false,
13
+ "tokenizer_class": "DebertaV2Tokenizer",
14
+ "unk_token": "[UNK]",
15
+ "vocab_type": "spm"
16
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.09724931471295409,
4
+ "train_runtime": 322.9196,
5
+ "train_samples": 1441,
6
+ "train_samples_per_second": 44.624,
7
+ "train_steps_per_second": 2.818
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "global_step": 910,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.0,
12
+ "eval_accuracy": 0.9533894011551323,
13
+ "eval_f1": 0.6969990319457888,
14
+ "eval_loss": 0.20486080646514893,
15
+ "eval_precision": 0.6617647058823529,
16
+ "eval_recall": 0.7361963190184049,
17
+ "eval_runtime": 1.2373,
18
+ "eval_samples_per_second": 130.123,
19
+ "eval_steps_per_second": 33.137,
20
+ "step": 91
21
+ },
22
+ {
23
+ "epoch": 1.1,
24
+ "learning_rate": 4.4505494505494504e-05,
25
+ "loss": 0.5036,
26
+ "step": 100
27
+ },
28
+ {
29
+ "epoch": 2.0,
30
+ "eval_accuracy": 0.9722362954706657,
31
+ "eval_f1": 0.8234146341463414,
32
+ "eval_loss": 0.11564752459526062,
33
+ "eval_precision": 0.7873134328358209,
34
+ "eval_recall": 0.8629856850715747,
35
+ "eval_runtime": 1.2367,
36
+ "eval_samples_per_second": 130.181,
37
+ "eval_steps_per_second": 33.152,
38
+ "step": 182
39
+ },
40
+ {
41
+ "epoch": 2.2,
42
+ "learning_rate": 3.901098901098901e-05,
43
+ "loss": 0.1442,
44
+ "step": 200
45
+ },
46
+ {
47
+ "epoch": 3.0,
48
+ "eval_accuracy": 0.9771000101327388,
49
+ "eval_f1": 0.8632812499999999,
50
+ "eval_loss": 0.10779214650392532,
51
+ "eval_precision": 0.8261682242990654,
52
+ "eval_recall": 0.9038854805725971,
53
+ "eval_runtime": 1.2508,
54
+ "eval_samples_per_second": 128.715,
55
+ "eval_steps_per_second": 32.778,
56
+ "step": 273
57
+ },
58
+ {
59
+ "epoch": 3.3,
60
+ "learning_rate": 3.3516483516483513e-05,
61
+ "loss": 0.0757,
62
+ "step": 300
63
+ },
64
+ {
65
+ "epoch": 4.0,
66
+ "eval_accuracy": 0.9780119566318776,
67
+ "eval_f1": 0.8851148851148851,
68
+ "eval_loss": 0.1178947389125824,
69
+ "eval_precision": 0.865234375,
70
+ "eval_recall": 0.9059304703476483,
71
+ "eval_runtime": 1.2453,
72
+ "eval_samples_per_second": 129.288,
73
+ "eval_steps_per_second": 32.924,
74
+ "step": 364
75
+ },
76
+ {
77
+ "epoch": 4.4,
78
+ "learning_rate": 2.8021978021978025e-05,
79
+ "loss": 0.0526,
80
+ "step": 400
81
+ },
82
+ {
83
+ "epoch": 5.0,
84
+ "eval_accuracy": 0.9836862904042962,
85
+ "eval_f1": 0.897876643073812,
86
+ "eval_loss": 0.0906740128993988,
87
+ "eval_precision": 0.888,
88
+ "eval_recall": 0.9079754601226994,
89
+ "eval_runtime": 1.2584,
90
+ "eval_samples_per_second": 127.94,
91
+ "eval_steps_per_second": 32.581,
92
+ "step": 455
93
+ },
94
+ {
95
+ "epoch": 5.49,
96
+ "learning_rate": 2.252747252747253e-05,
97
+ "loss": 0.0342,
98
+ "step": 500
99
+ },
100
+ {
101
+ "epoch": 6.0,
102
+ "eval_accuracy": 0.9831796534603303,
103
+ "eval_f1": 0.9130869130869131,
104
+ "eval_loss": 0.0972292423248291,
105
+ "eval_precision": 0.892578125,
106
+ "eval_recall": 0.934560327198364,
107
+ "eval_runtime": 1.2748,
108
+ "eval_samples_per_second": 126.296,
109
+ "eval_steps_per_second": 32.162,
110
+ "step": 546
111
+ },
112
+ {
113
+ "epoch": 6.59,
114
+ "learning_rate": 1.7032967032967035e-05,
115
+ "loss": 0.0245,
116
+ "step": 600
117
+ },
118
+ {
119
+ "epoch": 7.0,
120
+ "eval_accuracy": 0.9833823082379167,
121
+ "eval_f1": 0.9107321965897693,
122
+ "eval_loss": 0.10643576085567474,
123
+ "eval_precision": 0.8937007874015748,
124
+ "eval_recall": 0.9284253578732107,
125
+ "eval_runtime": 1.2478,
126
+ "eval_samples_per_second": 129.031,
127
+ "eval_steps_per_second": 32.859,
128
+ "step": 637
129
+ },
130
+ {
131
+ "epoch": 7.69,
132
+ "learning_rate": 1.153846153846154e-05,
133
+ "loss": 0.0188,
134
+ "step": 700
135
+ },
136
+ {
137
+ "epoch": 8.0,
138
+ "eval_accuracy": 0.9850035464586078,
139
+ "eval_f1": 0.9169169169169169,
140
+ "eval_loss": 0.09653466939926147,
141
+ "eval_precision": 0.8980392156862745,
142
+ "eval_recall": 0.9366053169734151,
143
+ "eval_runtime": 1.2451,
144
+ "eval_samples_per_second": 129.306,
145
+ "eval_steps_per_second": 32.929,
146
+ "step": 728
147
+ },
148
+ {
149
+ "epoch": 8.79,
150
+ "learning_rate": 6.043956043956044e-06,
151
+ "loss": 0.0159,
152
+ "step": 800
153
+ },
154
+ {
155
+ "epoch": 9.0,
156
+ "eval_accuracy": 0.984598236903435,
157
+ "eval_f1": 0.9201213346814965,
158
+ "eval_loss": 0.09986742585897446,
159
+ "eval_precision": 0.91,
160
+ "eval_recall": 0.9304703476482618,
161
+ "eval_runtime": 1.2461,
162
+ "eval_samples_per_second": 129.208,
163
+ "eval_steps_per_second": 32.904,
164
+ "step": 819
165
+ },
166
+ {
167
+ "epoch": 9.89,
168
+ "learning_rate": 5.494505494505495e-07,
169
+ "loss": 0.0141,
170
+ "step": 900
171
+ },
172
+ {
173
+ "epoch": 10.0,
174
+ "eval_accuracy": 0.985104873847401,
175
+ "eval_f1": 0.911088911088911,
176
+ "eval_loss": 0.09563781321048737,
177
+ "eval_precision": 0.890625,
178
+ "eval_recall": 0.9325153374233128,
179
+ "eval_runtime": 1.2493,
180
+ "eval_samples_per_second": 128.877,
181
+ "eval_steps_per_second": 32.819,
182
+ "step": 910
183
+ },
184
+ {
185
+ "epoch": 10.0,
186
+ "step": 910,
187
+ "total_flos": 1883034567828480.0,
188
+ "train_loss": 0.09724931471295409,
189
+ "train_runtime": 322.9196,
190
+ "train_samples_per_second": 44.624,
191
+ "train_steps_per_second": 2.818
192
+ }
193
+ ],
194
+ "max_steps": 910,
195
+ "num_train_epochs": 10,
196
+ "total_flos": 1883034567828480.0,
197
+ "trial_name": null,
198
+ "trial_params": null
199
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:872b0c9a30857c46bfc90e2d51e67a262aea692254c5bde161bebb6cafe01c96
3
+ size 3375