File size: 7,018 Bytes
2d573d6 aaab92f 2d573d6 aaab92f 2d573d6 aaab92f 2d573d6 7283fb2 29dd0b5 2d573d6 10006bb 2d573d6 bf4388e 2d573d6 95a077a 2d573d6 77e0237 2d573d6 db6246b 2d573d6 be4f228 2d573d6 95a077a 2d573d6 95a077a 2d573d6 2e87e07 aaab92f 2d573d6 77e0237 83e595e 2d573d6 62270b9 6ada373 2d573d6 62270b9 2d573d6 62270b9 2d573d6 95a077a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: "<|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>"
example_title: Machine Learning
- text: "<|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>"
example_title: Ethics
- text: "<|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>"
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.1
top_k: 50
top_p: 1.0
max_new_tokens: 200
early_stopping: true
co2_eq_emissions:
emissions: 290
source: CodeCarbon
training_type: fine-tuning
geographical_location: United States of America
hardware_used: NVIDIA A100-SXM4-40GB
license: apache-2.0
---
# Aira-2-355M
Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-355M is an instruction-tuned model based on [GPT-2](https://huggingface.co/gpt2-medium). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
## Details
- **Size:** 354,825,216 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** English
- **Number of Epochs:** 3
- **Batch size:** 16
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 0.29 KgCO2 (United States of America)
- **Total Energy Consumption:** 0.83 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
## Usage
Three special tokens are used to mark the user side of the interaction and the model's response:
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-355M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-355M')
aira.eval()
aira.to(device)
question = input("Enter your question: ")
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
add_special_tokens=False,
return_tensors="pt").to(device)
responses = aira.generate(**inputs, num_return_sequences=2)
print(f"Question: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>>Question: 👤 What is the capital of Brazil?
>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.
```
## Limitations
- **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.
- **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.
- **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.
## Evaluation
|Model |Average |[ARC](https://arxiv.org/abs/1803.05457) |[TruthfulQA](https://arxiv.org/abs/2109.07958) |[ToxiGen](https://arxiv.org/abs/2203.09509) |
| ---------------------------------------------------------------------- | -------- | -------------------------------------- | --------------------------------------------- | ------------------------------------------ |
|[Aira-2-124M-DPO](https://huggingface.co/nicholasKluge/Aira-2-124M-DPO) |**40.68** |**24.66** |**42.61** |**54.79** |
|[Aira-2-124M](https://huggingface.co/nicholasKluge/Aira-2-124M) |38.07 |24.57 |41.02 |48.62 |
|GPT-2 |35.37 |21.84 |40.67 |43.62 |
|[Aira-2-355M](https://huggingface.co/nicholasKluge/Aira-2-355M) |**39.68** |**27.56** |38.53 |**53.19** |
|GPT-2-medium |36.43 |27.05 |**40.76** |41.49 |
|[Aira-2-774M](https://huggingface.co/nicholasKluge/Aira-2-774M) |**42.26** |**28.75** |**41.33** |**56.70** |
|GPT-2-large |35.16 |25.94 |38.71 |40.85 |
|[Aira-2-1B5](https://huggingface.co/nicholasKluge/Aira-2-1B5) |**42.22** |28.92 |**41.16** |**56.60** |
|GPT-2-xl |36.84 |**30.29** |38.54 |41.70 |
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).
## Cite as 🤗
```latex
@misc{nicholas22aira,
doi = {10.5281/zenodo.6989727},
url = {https://github.com/Nkluge-correa/Aira},
author = {Nicholas Kluge Corrêa},
title = {Aira},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
}
@phdthesis{kluge2024dynamic,
title={Dynamic Normativity},
author={Kluge Corr{\^e}a, Nicholas},
year={2024},
school={Universit{\"a}ts-und Landesbibliothek Bonn}
}
```
## License
Aira-2-355M is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
|