File size: 15,328 Bytes
d9cd092 bf0b4f3 d9cd092 bf0b4f3 d9cd092 bf0b4f3 d9cd092 7c558af d9cd092 7c558af d9cd092 7c558af d9cd092 7c558af d9cd092 7c558af d9cd092 7c558af d9cd092 0694583 d9cd092 a4f9abb d9cd092 7c558af d9cd092 f8594f5 d9cd092 f8594f5 d9cd092 f8594f5 d9cd092 c890b6a d9cd092 31d7b7e d9cd092 f8594f5 d9cd092 bf0b4f3 d9cd092 b549f37 d9cd092 31d7b7e d9cd092 31d7b7e d9cd092 31d7b7e d9cd092 31d7b7e fa8e4eb 31d7b7e fa8e4eb 31d7b7e fa8e4eb 31d7b7e d9cd092 31d7b7e 1ce957a 31d7b7e dc2a81e d9cd092 bf0b4f3 d9cd092 7c558af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset-v2
language:
- pt
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-generation
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
widget:
- text: >-
<s><instruction>Cite algumas bandas de rock famosas da década de
1960.</instruction>
example_title: Exemplo
- text: <s><instruction>Quantos planetas existem no sistema solar?</instruction>
example_title: Exemplo
- text: <s><instruction>Qual é o futuro do ser humano?</instruction>
example_title: Exemplo
- text: <s><instruction>Qual o sentido da vida?</instruction>
example_title: Exemplo
- text: <s><instruction>Como imprimir hello world em python?</instruction>
example_title: Exemplo
- text: >-
<s><instruction>Invente uma história sobre um encanador com poderes
mágicos.</instruction>
example_title: Exemplo
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.1
top_k: 50
top_p: 1.0
max_new_tokens: 200
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 2530
source: CodeCarbon
training_type: fine-tuning
geographical_location: United States of America
hardware_used: NVIDIA A100-SXM4-40GB
base_model:
- nicholasKluge/TeenyTinyLlama-460m
---
# TeenyTinyLlama-460m-Chat
TeenyTinyLlama is a pair of small foundational models trained in Brazilian Portuguese.
This repository contains a version of [TeenyTinyLlama-460m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m) (`TeenyTinyLlama-460m-Chat`) fine-tuned on the [Instruct-Aira Dataset version 2.0](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset-v2).
## Details
- **Number of Epochs:** 3
- **Batch size:** 4
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e3, learning_rate = 1e-5, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Carbon emissions** stats are logged in this [file](emissions.csv).
This repository has the [source code](https://github.com/Nkluge-correa/TeenyTinyLlama) used to train this model.
## Intended Uses
The primary intended use of TeenyTinyLlama is to research the challenges related to developing language models for low-resource languages. Checkpoints saved during training are intended to provide a controlled setting for performing scientific experiments. You may also further fine-tune and adapt TeenyTinyLlama for deployment, as long as your use is following the Apache 2.0 license. If you decide to use pre-trained TeenyTinyLlama as a basis for your fine-tuned model, please conduct your own risk and bias assessment.
## Out-of-scope Use
TeenyTinyLlama is not intended for deployment. It is not a product and should not be used for human-facing interactions.
TeenyTinyLlama models are Brazilian Portuguese language only and are not suitable for translation or generating text in other languages.
TeenyTinyLlama has not been fine-tuned for downstream contexts in which language models are commonly deployed.
## Usage
The following special tokens are used to mark the user side of the interaction and the model's response:
`<instruction>`What is a language model?`</instruction>`A language model is a probability distribution over a vocabulary.`</s>`
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/TeenyTinyLlama-460m-Chat')
model = AutoModelForCausalLM.from_pretrained('nicholasKluge/TeenyTinyLlama-460m-Chat')
model.eval()
model.to(device)
question = input("Entre seu prompt aqui: ")
inputs = tokenizer("<instruction>" + question + "</instruction>", return_tensors="pt").to(device)
responses = model.generate(**inputs, num_return_sequences=2)
print(f"Pergunta: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Resposta {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>>Question: 👤 Qual a capital do Brasil?
>>>Response 1: 🤖 A capital do Brasil é Brasília.
>>>Response 2: 🤖 A capital do Brasil é Brasília.
```
The chat template for this model is:
```bash
{{bos_token}}
{% for message in messages %}
{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
{% endif %}
{% if message['role'] == 'user' %}
{{ '<instruction>' + message['content'].strip() + '</instruction>'}}
{% elif message['role'] == 'assistant' %}
{{ message['content'].strip() + eos_token}}
{% else %}
{{ raise_exception('Only user and assistant roles are supported!') }}
{% endif %}
{% endfor %}
```
## Limitations
Like almost all other language models trained on large text datasets scraped from the web, the TTL pair exhibited behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, nontoxic text generation. Our models are all subject to the following:
- **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.
- **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.
- **Unreliable Code:** The model may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions.
- **Language Limitations:** The model is primarily designed to understand standard Brazilian Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response.
- **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.
Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on these models if intending to use them for real-world applications and also have humans moderating the outputs of these models in applications where they will interact with an audience, guaranteeing users are always aware they are interacting with a language model.
## Evaluations
During our training runs, both models showed consistent convergence. At no point did our evaluation curves show signs of overfitting or saturation. In the case of our 460m parameter model, we intentionally trained past the optimal point by approximately 75,000 steps to assess if there were any signs of saturation, but our evaluations consistently gave better results. We hypothesize that our models are under-trained but can improve if further trained to pass the Chinchilla optimal range.
| Processed Tokens | Perplexity | Energy Consumption (kWh) | Emissions (KgCO2eq) |
|------------------|------------|---------------------------|----------------------|
| 8.1M | 20.49 | 9.40 | 3.34 |
| 1.6B | 16.90 | 18.82 | 6.70 |
| 2.4B | 15.43 | 28.59 | 10.16 |
| 3.2B | 14.64 | 38.20 | 13.57 |
| 4.0B | 14.08 | 48.04 | 17.07 |
| 4.9B | 13.61 | 57.74 | 20.52 |
| 5.7B | 13.25 | 67.32 | 23.92 |
| 6.5B | 12.87 | 76.84 | 27.30 |
| 7.3B | 12.57 | 86.40 | 30.70 |
| 8.1B | 12.27 | 96.19 | 34.18 |
| 9.0B | 11.96 | 106.06 | 37.70 |
| 9.8B | 11.77 | 115.69 | 41.31 |
## Benchmarks
Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). [Laiviet](https://github.com/laiviet/lm-evaluation-harness) translated the tasks from the LM-Evaluation-Harness we used. The results of models marked with an "*" were extracted from the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
| | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Average** |
|------------------|-----------|---------------|-----------|----------------|-------------|
| Pythia-410m | 24.83* | 41.29* | 25.99* | 40.95* | 33.26 |
| **TTL-460m** | 29.40 | 33.00 | 28.55 | 41.10 | 33.01 |
| Bloom-560m | 24.74* | 37.15* | 24.22* | 42.44* | 32.13 |
| Xglm-564M | 25.56 | 34.64* | 25.18* | 42.53 | 31.97 |
| OPT-350m | 23.55* | 36.73* | 26.02* | 40.83* | 31.78 |
| **TTL-160m** | 26.15 | 29.29 | 28.11 | 41.12 | 31.16 |
| Pythia-160m | 24.06* | 31.39* | 24.86* | 44.34* | 31.16 |
| OPT-125m | 22.87* | 31.47* | 26.02* | 42.87* | 30.80 |
| GPorTuguese-2 | 22.48 | 29.62 | 27.36 | 41.44 | 30.22 |
| Gpt2-small | 21.48* | 31.60* | 25.79* | 40.65* | 29.97 |
| Multilingual GPT | 23.81 | 26.37* | 25.17* | 39.62 | 28.73 |
Evaluations on Brazilian Portuguese benchmarks were performed using a [Portuguese implementation of the EleutherAI LM Evaluation Harness](https://github.com/eduagarcia/lm-evaluation-harness-pt) (created by [Eduardo Garcia](https://github.com/eduagarcia/lm-evaluation-harness-pt)).
| | **ASSIN2 RTE** | **ASSIN2 STS** | **BLUEX** | **ENEM** | **FAQUAD NLI** | **HateBR** | **OAB Exams** | **Average** |
|----------------|----------------|----------------|-----------|----------|----------------|------------|---------------|-------------|
| Qwen-1.8B | 64.83 | 19.53 | 26.15 | 30.23 | 43.97 | 33.33 | 27.20 | 35.03 |
| TinyLlama-1.1B | 58.93 | 13.57 | 22.81 | 22.25 | 43.97 | 36.92 | 23.64 | 31.72 |
| **TTL-460m** | 53.93 | 12.66 | 22.81 | 19.87 | 49.01 | 33.59 | 27.06 | 31.27 |
| XGLM-564m | 49.61 | 22.91 | 19.61 | 19.38 | 43.97 | 33.99 | 23.42 | 30.41 |
| Bloom-1b7 | 53.60 | 4.81 | 21.42 | 18.96 | 43.97 | 34.89 | 23.05 | 28.67 |
| **TTL-160m** | 53.36 | 2.58 | 21.84 | 18.75 | 43.97 | 36.88 | 22.60 | 28.56 |
| OPT-125m | 39.77 | 2.00 | 21.84 | 17.42 | 43.97 | 47.04 | 22.78 | 27.83 |
| Pythia-160 | 33.33 | 12.81 | 16.13 | 16.66 | 50.36 | 41.09 | 22.82 | 27.60 |
| OLMo-1b | 34.12 | 9.28 | 18.92 | 20.29 | 43.97 | 41.33 | 22.96 | 27.26 |
| Bloom-560m | 33.33 | 8.48 | 18.92 | 19.03 | 43.97 | 37.07 | 23.05 | 26.26 |
| Pythia-410m | 33.33 | 4.80 | 19.47 | 19.45 | 43.97 | 33.33 | 23.01 | 25.33 |
| OPT-350m | 33.33 | 3.65 | 20.72 | 17.35 | 44.71 | 33.33 | 23.01 | 25.15 |
| GPT-2 small | 33.26 | 0.00 | 10.43 | 11.20 | 43.52 | 33.68 | 13.12 | 20.74 |
| GPorTuguese | 33.33 | 3.85 | 14.74 | 3.01 | 28.81 | 33.33 | 21.23 | 19.75 |
| Samba-1.1B | 33.33 | 1.30 | 8.07 | 10.22 | 17.72 | 35.79 | 15.03 | 17.35 |
## Fine-Tuning Comparisons
To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications.
| Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average |
|-----------------|-----------|------------|-----------|-----------|-----------|---------|
| BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 |
| BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 |
| **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 |
| **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 |
All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models.
## Cite as 🤗
```latex
@misc{correa24ttllama,
title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese},
author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar},
journal={arXiv preprint arXiv:2401.16640},
year={2024}
}
@misc{correa24ttllama,
doi = {10.1016/j.mlwa.2024.100558},
url = {https://www.sciencedirect.com/science/article/pii/S2666827024000343},
title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese},
author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar},
journal={Machine Learning With Applications},
publisher = {Springer},
year={2024}
}
```
## Funding
This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil.
## License
TeenyTinyLlama-460m-Chat is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details. |