--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder widget: - src: https://drive.google.com/uc?id=1trKgvkMRQ3BB0VcqnDwmieLxXhWmS8rq example_title: Annual Crop - src: https://drive.google.com/uc?id=1kWQbPNHVa_JscS0age5E0UOSBcU1bh18 example_title: Forest - src: https://drive.google.com/uc?id=12YbxF-MfpMqLPB91HuTPEgcg1xnZKhGP example_title: Herbaceous Vegetation - src: https://drive.google.com/uc?id=1NkzDiaQ1ciMDf89C8uA5zGx984bwkFCi example_title: Highway - src: https://drive.google.com/uc?id=1F6r7O0rlgzaPvY6XBpFOWUTIddEIUkxx example_title: Industrial - src: https://drive.google.com/uc?id=16zOtFHZ9E17jA9Ua4PsXrUjugSs77XKm example_title: Pasture - src: https://drive.google.com/uc?id=163tqIdoVY7WFtKQlpz_bPM9WjwbJAtd example_title: Permanent Crop - src: https://drive.google.com/uc?id=1qsX-XsrE3dMp7C7LLVa6HriaABIXuBrJ example_title: Residential - src: https://drive.google.com/uc?id=1UK2praQHbNXDnctJt58rrlQZu84lxyk example_title: River - src: https://drive.google.com/uc?id=1zVAfR7N5hXy6eq1cVOd8bXPjC1sqxVir example_title: Sea Lake metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9848148148148148 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0536 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2602 | 1.0 | 190 | 0.1310 | 0.9563 | | 0.1975 | 2.0 | 380 | 0.1063 | 0.9637 | | 0.142 | 3.0 | 570 | 0.0642 | 0.9767 | | 0.1235 | 4.0 | 760 | 0.0560 | 0.9837 | | 0.1019 | 5.0 | 950 | 0.0536 | 0.9848 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1