vit-base-beans / trainer_state.json
nickmuchi's picture
🍻 cheers
9d88662
{
"best_metric": 0.05050145834684372,
"best_model_checkpoint": "./vit-base-beans-demo-v5/checkpoint-500",
"epoch": 8.0,
"global_step": 520,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.15,
"learning_rate": 0.00019615384615384615,
"loss": 0.9379,
"step": 10
},
{
"epoch": 0.31,
"learning_rate": 0.00019230769230769233,
"loss": 0.4657,
"step": 20
},
{
"epoch": 0.46,
"learning_rate": 0.00018846153846153847,
"loss": 0.1998,
"step": 30
},
{
"epoch": 0.62,
"learning_rate": 0.00018461538461538463,
"loss": 0.3618,
"step": 40
},
{
"epoch": 0.77,
"learning_rate": 0.00018076923076923077,
"loss": 0.2387,
"step": 50
},
{
"epoch": 0.92,
"learning_rate": 0.00017692307692307693,
"loss": 0.1682,
"step": 60
},
{
"epoch": 1.08,
"learning_rate": 0.0001730769230769231,
"loss": 0.2817,
"step": 70
},
{
"epoch": 1.23,
"learning_rate": 0.00016923076923076923,
"loss": 0.1381,
"step": 80
},
{
"epoch": 1.38,
"learning_rate": 0.0001653846153846154,
"loss": 0.1933,
"step": 90
},
{
"epoch": 1.54,
"learning_rate": 0.00016153846153846155,
"loss": 0.1166,
"step": 100
},
{
"epoch": 1.54,
"eval_accuracy": 0.9849624060150376,
"eval_loss": 0.07644423842430115,
"eval_runtime": 1.439,
"eval_samples_per_second": 92.425,
"eval_steps_per_second": 11.814,
"step": 100
},
{
"epoch": 1.69,
"learning_rate": 0.0001576923076923077,
"loss": 0.0955,
"step": 110
},
{
"epoch": 1.85,
"learning_rate": 0.00015384615384615385,
"loss": 0.1201,
"step": 120
},
{
"epoch": 2.0,
"learning_rate": 0.00015000000000000001,
"loss": 0.1216,
"step": 130
},
{
"epoch": 2.15,
"learning_rate": 0.00014615384615384615,
"loss": 0.0981,
"step": 140
},
{
"epoch": 2.31,
"learning_rate": 0.0001423076923076923,
"loss": 0.0418,
"step": 150
},
{
"epoch": 2.46,
"learning_rate": 0.00013846153846153847,
"loss": 0.0546,
"step": 160
},
{
"epoch": 2.62,
"learning_rate": 0.00013461538461538464,
"loss": 0.0333,
"step": 170
},
{
"epoch": 2.77,
"learning_rate": 0.00013076923076923077,
"loss": 0.0193,
"step": 180
},
{
"epoch": 2.92,
"learning_rate": 0.00012692307692307693,
"loss": 0.0325,
"step": 190
},
{
"epoch": 3.08,
"learning_rate": 0.0001230769230769231,
"loss": 0.1607,
"step": 200
},
{
"epoch": 3.08,
"eval_accuracy": 0.9398496240601504,
"eval_loss": 0.21135304868221283,
"eval_runtime": 1.6144,
"eval_samples_per_second": 82.384,
"eval_steps_per_second": 10.53,
"step": 200
},
{
"epoch": 3.23,
"learning_rate": 0.00011923076923076923,
"loss": 0.0295,
"step": 210
},
{
"epoch": 3.38,
"learning_rate": 0.00011538461538461538,
"loss": 0.0193,
"step": 220
},
{
"epoch": 3.54,
"learning_rate": 0.00011153846153846154,
"loss": 0.0271,
"step": 230
},
{
"epoch": 3.69,
"learning_rate": 0.0001076923076923077,
"loss": 0.0098,
"step": 240
},
{
"epoch": 3.85,
"learning_rate": 0.00010384615384615386,
"loss": 0.0104,
"step": 250
},
{
"epoch": 4.0,
"learning_rate": 0.0001,
"loss": 0.0079,
"step": 260
},
{
"epoch": 4.15,
"learning_rate": 9.615384615384617e-05,
"loss": 0.0077,
"step": 270
},
{
"epoch": 4.31,
"learning_rate": 9.230769230769232e-05,
"loss": 0.012,
"step": 280
},
{
"epoch": 4.46,
"learning_rate": 8.846153846153847e-05,
"loss": 0.0109,
"step": 290
},
{
"epoch": 4.62,
"learning_rate": 8.461538461538461e-05,
"loss": 0.0067,
"step": 300
},
{
"epoch": 4.62,
"eval_accuracy": 0.9774436090225563,
"eval_loss": 0.0692465677857399,
"eval_runtime": 1.4522,
"eval_samples_per_second": 91.585,
"eval_steps_per_second": 11.706,
"step": 300
},
{
"epoch": 4.77,
"learning_rate": 8.076923076923078e-05,
"loss": 0.0379,
"step": 310
},
{
"epoch": 4.92,
"learning_rate": 7.692307692307693e-05,
"loss": 0.0116,
"step": 320
},
{
"epoch": 5.08,
"learning_rate": 7.307692307692307e-05,
"loss": 0.0072,
"step": 330
},
{
"epoch": 5.23,
"learning_rate": 6.923076923076924e-05,
"loss": 0.0064,
"step": 340
},
{
"epoch": 5.38,
"learning_rate": 6.538461538461539e-05,
"loss": 0.0063,
"step": 350
},
{
"epoch": 5.54,
"learning_rate": 6.153846153846155e-05,
"loss": 0.0055,
"step": 360
},
{
"epoch": 5.69,
"learning_rate": 5.769230769230769e-05,
"loss": 0.0055,
"step": 370
},
{
"epoch": 5.85,
"learning_rate": 5.384615384615385e-05,
"loss": 0.0053,
"step": 380
},
{
"epoch": 6.0,
"learning_rate": 5e-05,
"loss": 0.0051,
"step": 390
},
{
"epoch": 6.15,
"learning_rate": 4.615384615384616e-05,
"loss": 0.005,
"step": 400
},
{
"epoch": 6.15,
"eval_accuracy": 0.9624060150375939,
"eval_loss": 0.0944083109498024,
"eval_runtime": 1.7559,
"eval_samples_per_second": 75.743,
"eval_steps_per_second": 9.681,
"step": 400
},
{
"epoch": 6.31,
"learning_rate": 4.230769230769231e-05,
"loss": 0.0049,
"step": 410
},
{
"epoch": 6.46,
"learning_rate": 3.846153846153846e-05,
"loss": 0.0047,
"step": 420
},
{
"epoch": 6.62,
"learning_rate": 3.461538461538462e-05,
"loss": 0.0047,
"step": 430
},
{
"epoch": 6.77,
"learning_rate": 3.0769230769230774e-05,
"loss": 0.0045,
"step": 440
},
{
"epoch": 6.92,
"learning_rate": 2.6923076923076923e-05,
"loss": 0.0045,
"step": 450
},
{
"epoch": 7.08,
"learning_rate": 2.307692307692308e-05,
"loss": 0.0045,
"step": 460
},
{
"epoch": 7.23,
"learning_rate": 1.923076923076923e-05,
"loss": 0.0044,
"step": 470
},
{
"epoch": 7.38,
"learning_rate": 1.5384615384615387e-05,
"loss": 0.0044,
"step": 480
},
{
"epoch": 7.54,
"learning_rate": 1.153846153846154e-05,
"loss": 0.0044,
"step": 490
},
{
"epoch": 7.69,
"learning_rate": 7.692307692307694e-06,
"loss": 0.0043,
"step": 500
},
{
"epoch": 7.69,
"eval_accuracy": 0.9849624060150376,
"eval_loss": 0.05050145834684372,
"eval_runtime": 1.4729,
"eval_samples_per_second": 90.301,
"eval_steps_per_second": 11.542,
"step": 500
},
{
"epoch": 7.85,
"learning_rate": 3.846153846153847e-06,
"loss": 0.0043,
"step": 510
},
{
"epoch": 8.0,
"learning_rate": 0.0,
"loss": 0.0043,
"step": 520
},
{
"epoch": 8.0,
"step": 520,
"total_flos": 6.410194832952852e+17,
"train_loss": 0.08019667567255405,
"train_runtime": 186.4742,
"train_samples_per_second": 44.36,
"train_steps_per_second": 2.789
}
],
"max_steps": 520,
"num_train_epochs": 8,
"total_flos": 6.410194832952852e+17,
"trial_name": null,
"trial_params": null
}