File size: 2,568 Bytes
028d5e0 d39e2d8 903add4 d39e2d8 903add4 028d5e0 d39e2d8 903add4 d39e2d8 fa0f6ce d39e2d8 903add4 d39e2d8 903add4 9403d47 903add4 cdafc49 9403d47 903add4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
- hate speech
pipeline_tag: text-classification
language:
- it
metrics:
- accuracy
---
# setfit-italian-hate-speech
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model detects the hate speech for italian language:
* 1 --> is hate speech
* 0 --> isn't hate speech
## Dataset
`setfit-italian-hate-speech` is trained on [HaSpeeDe-FB](http://twita.di.unito.it/dataset/haspeede) dataset.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("nickprock/setfit-italian-hate-speech")
# Run inference
preds = model(["Lei è una brutta bugiarda!", "Mi piace la pizza"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
### Dataset Citation
```bibtex
@inproceedings{https://researchr.org/publication/VignaCDPT17,
title = {Hate Me, Hate Me Not: Hate Speech Detection on Facebook},
author = {Fabio Del Vigna and Andrea Cimino and Felice dell'Orletta and Marinella Petrocchi and Maurizio Tesconi},
year = {2017},
url = {http://ceur-ws.org/Vol-1816/paper-09.pdf},
researchr = {https://researchr.org/publication/VignaCDPT17},
cites = {0},
citedby = {0},
pages = {86-95},
booktitle = {Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), Venice, Italy, January 17-20, 2017},
editor = {Alessandro Armando and Roberto Baldoni and Riccardo Focardi},
volume = {1816},
series = {CEUR Workshop Proceedings},
publisher = {CEUR-WS.org},
}
``` |