librarian-bot commited on
Commit
f483765
·
1 Parent(s): b7009e3

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR was requested via the [Librarian Bot](https://huggingface.co/librarian-bot) [metadata request service](https://huggingface.co/spaces/librarian-bots/metadata_request_service) by request of [davanstrien](https://huggingface.co/davanstrien)

Files changed (1) hide show
  1. README.md +39 -38
README.md CHANGED
@@ -6,12 +6,26 @@ datasets:
6
  - banking77
7
  metrics:
8
  - accuracy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  model-index:
10
  - name: xlm-roberta-base-banking77-classification
11
  results:
12
  - task:
13
- name: Text Classification
14
  type: text-classification
 
15
  dataset:
16
  name: banking77
17
  type: banking77
@@ -19,9 +33,9 @@ model-index:
19
  split: train
20
  args: default
21
  metrics:
22
- - name: Accuracy
23
- type: accuracy
24
  value: 0.9321428571428572
 
25
  - task:
26
  type: text-classification
27
  name: Text Classification
@@ -31,63 +45,50 @@ model-index:
31
  config: default
32
  split: test
33
  metrics:
34
- - name: Accuracy
35
- type: accuracy
36
  value: 0.9321428571428572
 
37
  verified: true
38
- - name: Precision Macro
39
- type: precision
40
  value: 0.9339627666926148
 
41
  verified: true
42
- - name: Precision Micro
43
- type: precision
44
  value: 0.9321428571428572
 
45
  verified: true
46
- - name: Precision Weighted
47
- type: precision
48
  value: 0.9339627666926148
 
49
  verified: true
50
- - name: Recall Macro
51
- type: recall
52
  value: 0.9321428571428572
 
53
  verified: true
54
- - name: Recall Micro
55
- type: recall
56
  value: 0.9321428571428572
 
57
  verified: true
58
- - name: Recall Weighted
59
- type: recall
60
  value: 0.9321428571428572
 
61
  verified: true
62
- - name: F1 Macro
63
- type: f1
64
  value: 0.9320514513719953
 
65
  verified: true
66
- - name: F1 Micro
67
- type: f1
68
  value: 0.9321428571428572
 
69
  verified: true
70
- - name: F1 Weighted
71
- type: f1
72
  value: 0.9320514513719956
 
73
  verified: true
74
- - name: loss
75
- type: loss
76
  value: 0.30337899923324585
 
77
  verified: true
78
- widget:
79
- - text: 'Can I track the card you sent to me? '
80
- example_title: Card Arrival Example - English
81
- - text: 'Posso tracciare la carta che mi avete spedito? '
82
- example_title: Card Arrival Example - Italian
83
- - text: Can you explain your exchange rate policy to me?
84
- example_title: Exchange Rate Example - English
85
- - text: Potete spiegarmi la vostra politica dei tassi di cambio?
86
- example_title: Exchange Rate Example - Italian
87
- - text: I can't pay by my credit card
88
- example_title: Card Not Working Example - English
89
- - text: Non riesco a pagare con la mia carta di credito
90
- example_title: Card Not Working Example - Italian
91
  ---
92
 
93
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
6
  - banking77
7
  metrics:
8
  - accuracy
9
+ widget:
10
+ - text: 'Can I track the card you sent to me? '
11
+ example_title: Card Arrival Example - English
12
+ - text: 'Posso tracciare la carta che mi avete spedito? '
13
+ example_title: Card Arrival Example - Italian
14
+ - text: Can you explain your exchange rate policy to me?
15
+ example_title: Exchange Rate Example - English
16
+ - text: Potete spiegarmi la vostra politica dei tassi di cambio?
17
+ example_title: Exchange Rate Example - Italian
18
+ - text: I can't pay by my credit card
19
+ example_title: Card Not Working Example - English
20
+ - text: Non riesco a pagare con la mia carta di credito
21
+ example_title: Card Not Working Example - Italian
22
+ base_model: xlm-roberta-base
23
  model-index:
24
  - name: xlm-roberta-base-banking77-classification
25
  results:
26
  - task:
 
27
  type: text-classification
28
+ name: Text Classification
29
  dataset:
30
  name: banking77
31
  type: banking77
 
33
  split: train
34
  args: default
35
  metrics:
36
+ - type: accuracy
 
37
  value: 0.9321428571428572
38
+ name: Accuracy
39
  - task:
40
  type: text-classification
41
  name: Text Classification
 
45
  config: default
46
  split: test
47
  metrics:
48
+ - type: accuracy
 
49
  value: 0.9321428571428572
50
+ name: Accuracy
51
  verified: true
52
+ - type: precision
 
53
  value: 0.9339627666926148
54
+ name: Precision Macro
55
  verified: true
56
+ - type: precision
 
57
  value: 0.9321428571428572
58
+ name: Precision Micro
59
  verified: true
60
+ - type: precision
 
61
  value: 0.9339627666926148
62
+ name: Precision Weighted
63
  verified: true
64
+ - type: recall
 
65
  value: 0.9321428571428572
66
+ name: Recall Macro
67
  verified: true
68
+ - type: recall
 
69
  value: 0.9321428571428572
70
+ name: Recall Micro
71
  verified: true
72
+ - type: recall
 
73
  value: 0.9321428571428572
74
+ name: Recall Weighted
75
  verified: true
76
+ - type: f1
 
77
  value: 0.9320514513719953
78
+ name: F1 Macro
79
  verified: true
80
+ - type: f1
 
81
  value: 0.9321428571428572
82
+ name: F1 Micro
83
  verified: true
84
+ - type: f1
 
85
  value: 0.9320514513719956
86
+ name: F1 Weighted
87
  verified: true
88
+ - type: loss
 
89
  value: 0.30337899923324585
90
+ name: loss
91
  verified: true
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  ---
93
 
94
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You