--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: peft tags: - generated_from_trainer model-index: - name: Llama-3.2-1B-Instruct-Uncensored results: [] license: llama3.2 datasets: - Guilherme34/uncensor --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: /root/Llama-3.2-1B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: llama3 datasets: - path: fozziethebeat/alpaca_messages_2k_test type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content roles: user: - user assistant: - assistant datasets: - path: Guilherme34/uncensor type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out/Llama-3.2-1B-Instruct-Uncensored save_safetensors: true sequence_len: 4096 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/out/Llama-3.2-1B-Instruct-Uncensored This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0