A-suozhang
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,46 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
```shell
|
7 |
pip install -i https://pypi.org/simple/ mixdq-extension --upgrade
|
8 |
```
|
@@ -47,7 +85,10 @@ run the pipeline:
|
|
47 |
image.save('mixdq_pipeline.png')
|
48 |
```
|
49 |
|
|
|
|
|
50 |
Performance tested on NVIDIA 4080:
|
|
|
51 |
| UNet Latency (ms) | No CUDA Graph | With CUDA Graph |
|
52 |
|-------------------|---------------|-----------------|
|
53 |
| FP16 version | 44.6 | 36.1 |
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: text-to-image
|
4 |
+
tags:
|
5 |
+
- diffusion
|
6 |
+
- efficient
|
7 |
+
- quantization
|
8 |
+
- Diffusers
|
9 |
+
- StableDiffusionXLPipeline
|
10 |
---
|
11 |
|
12 |
+
# MixDQ Model Card
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
MixDQ is a mixed precision quantization methods that compress the memory and computational usage of text-to-image diffusion models while preserving genration quality.
|
17 |
+
It supports few-step diffusion models (e.g., SDXL-turbo, LCM-lora) to construct both fast and tiny diffusion models. Efficient CUDA kernel implemention is provided for practical resource savings.
|
18 |
+
|
19 |
+
<img src="https://github.com/A-suozhang/MyPicBed/raw/master/img/mixdq_model_card_0.jpg" width="600">
|
20 |
+
|
21 |
+
|
22 |
+
## Model Sources
|
23 |
+
|
24 |
+
for more information, please refer to:
|
25 |
+
|
26 |
+
- Project Page: [https://a-suozhang.xyz/mixdq.github.io/](https://a-suozhang.xyz/mixdq.github.io/).
|
27 |
+
- Arxiv paper: [https://arxiv.org/abs/2405.17873](https://arxiv.org/abs/2405.17873)
|
28 |
+
- Github Repository: [https://github.com/A-suozhang/MixDQ](https://github.com/A-suozhang/MixDQ)
|
29 |
+
|
30 |
+
## Evaluation
|
31 |
+
|
32 |
+
We evaluate the MixDQ model using various metrics, including FID (fidelity), CLIPScore (image-text alignment), and ImageReward (human preference). MixDQ can achieve W8A8 quantization without performance loss. The differences between images generated by MixDQ and those generated by FP16 models are negligible.
|
33 |
+
|
34 |
+
| Method | FID (↓) | ClipScore | ImageReward |
|
35 |
+
|------------|---------|-----------|-------------|
|
36 |
+
| FP16 | 17.15 | 0.2722 | 0.8631 |
|
37 |
+
| MixDQ-W8A8 | 17.03 | 0.2703 | 0.8415 |
|
38 |
+
| MixDQ-W5A8 | 17.23 | 0.2697 | 0.8307 |
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
|
43 |
+
install the prerequisite for Mixdq:
|
44 |
```shell
|
45 |
pip install -i https://pypi.org/simple/ mixdq-extension --upgrade
|
46 |
```
|
|
|
85 |
image.save('mixdq_pipeline.png')
|
86 |
```
|
87 |
|
88 |
+
|
89 |
+
|
90 |
Performance tested on NVIDIA 4080:
|
91 |
+
|
92 |
| UNet Latency (ms) | No CUDA Graph | With CUDA Graph |
|
93 |
|-------------------|---------------|-----------------|
|
94 |
| FP16 version | 44.6 | 36.1 |
|