A-suozhang commited on
Commit
19aa9d7
·
verified ·
1 Parent(s): 86f4f36

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -1
README.md CHANGED
@@ -1,8 +1,46 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
4
 
5
- set up the environment for mixdq:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ```shell
7
  pip install -i https://pypi.org/simple/ mixdq-extension --upgrade
8
  ```
@@ -47,7 +85,10 @@ run the pipeline:
47
  image.save('mixdq_pipeline.png')
48
  ```
49
 
 
 
50
  Performance tested on NVIDIA 4080:
 
51
  | UNet Latency (ms) | No CUDA Graph | With CUDA Graph |
52
  |-------------------|---------------|-----------------|
53
  | FP16 version | 44.6 | 36.1 |
 
1
  ---
2
  license: mit
3
+ pipeline_tag: text-to-image
4
+ tags:
5
+ - diffusion
6
+ - efficient
7
+ - quantization
8
+ - Diffusers
9
+ - StableDiffusionXLPipeline
10
  ---
11
 
12
+ # MixDQ Model Card
13
+
14
+ ## Model Description
15
+
16
+ MixDQ is a mixed precision quantization methods that compress the memory and computational usage of text-to-image diffusion models while preserving genration quality.
17
+ It supports few-step diffusion models (e.g., SDXL-turbo, LCM-lora) to construct both fast and tiny diffusion models. Efficient CUDA kernel implemention is provided for practical resource savings.
18
+
19
+ <img src="https://github.com/A-suozhang/MyPicBed/raw/master/img/mixdq_model_card_0.jpg" width="600">
20
+
21
+
22
+ ## Model Sources
23
+
24
+ for more information, please refer to:
25
+
26
+ - Project Page: [https://a-suozhang.xyz/mixdq.github.io/](https://a-suozhang.xyz/mixdq.github.io/).
27
+ - Arxiv paper: [https://arxiv.org/abs/2405.17873](https://arxiv.org/abs/2405.17873)
28
+ - Github Repository: [https://github.com/A-suozhang/MixDQ](https://github.com/A-suozhang/MixDQ)
29
+
30
+ ## Evaluation
31
+
32
+ We evaluate the MixDQ model using various metrics, including FID (fidelity), CLIPScore (image-text alignment), and ImageReward (human preference). MixDQ can achieve W8A8 quantization without performance loss. The differences between images generated by MixDQ and those generated by FP16 models are negligible.
33
+
34
+ | Method | FID (↓) | ClipScore | ImageReward |
35
+ |------------|---------|-----------|-------------|
36
+ | FP16 | 17.15 | 0.2722 | 0.8631 |
37
+ | MixDQ-W8A8 | 17.03 | 0.2703 | 0.8415 |
38
+ | MixDQ-W5A8 | 17.23 | 0.2697 | 0.8307 |
39
+
40
+ ## Usage
41
+
42
+
43
+ install the prerequisite for Mixdq:
44
  ```shell
45
  pip install -i https://pypi.org/simple/ mixdq-extension --upgrade
46
  ```
 
85
  image.save('mixdq_pipeline.png')
86
  ```
87
 
88
+
89
+
90
  Performance tested on NVIDIA 4080:
91
+
92
  | UNet Latency (ms) | No CUDA Graph | With CUDA Graph |
93
  |-------------------|---------------|-----------------|
94
  | FP16 version | 44.6 | 36.1 |