rogkesavan commited on
Commit
93324c7
1 Parent(s): bc42c8d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +142 -3
README.md CHANGED
@@ -1,3 +1,142 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - nidum/Nidum-Llama-3.2-3B-Uncensored
5
+ - meta-llama/Llama-3.2-3B
6
+ library_name: adapter-transformers
7
+ tags:
8
+ - chemistry
9
+ - biology
10
+ - legal
11
+ - code
12
+ - medical
13
+ - finance
14
+ ---
15
+ ### Nidum-Llama-3.2-3B-Uncensored
16
+
17
+ ### Welcome to Nidum!
18
+ At Nidum, we believe in pushing the boundaries of innovation by providing advanced and unrestricted AI models for every application. Dive into our world of possibilities and experience the freedom of **Nidum-Llama-3.2-3B-Uncensored**, tailored to meet diverse needs with exceptional performance.
19
+
20
+ ---
21
+
22
+ [![GitHub Icon](https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Font_Awesome_5_brands_github.svg/232px-Font_Awesome_5_brands_github.svg.png)](https://github.com/NidumAI-Inc)
23
+ **Explore Nidum's Open-Source Projects on GitHub**: [https://github.com/NidumAI-Inc](https://github.com/NidumAI-Inc)
24
+
25
+ ---
26
+ ### Key Features
27
+
28
+ 1. **Uncensored Responses**: Capable of addressing any query without content restrictions, offering detailed and uninhibited answers.
29
+ 2. **Versatility**: Excels in diverse use cases, from complex technical queries to engaging casual conversations.
30
+ 3. **Advanced Contextual Understanding**: Draws from an expansive knowledge base for accurate and context-aware outputs.
31
+ 4. **Extended Context Handling**: Optimized for handling long-context interactions for improved continuity and depth.
32
+ 5. **Customizability**: Adaptable to specific tasks and user preferences through fine-tuning.
33
+
34
+ ---
35
+
36
+ ### Use Cases
37
+
38
+ - **Open-Ended Q&A**
39
+ - **Creative Writing and Ideation**
40
+ - **Research Assistance**
41
+ - **Educational Queries**
42
+ - **Casual Conversations**
43
+ - **Mathematical Problem Solving**
44
+ - **Long-Context Dialogues**
45
+
46
+ ---
47
+
48
+ ### How to Use
49
+
50
+ To start using **Nidum-Llama-3.2-3B-Uncensored**, follow the sample code below:
51
+
52
+ ```python
53
+ import torch
54
+ from transformers import pipeline
55
+
56
+ pipe = pipeline(
57
+ "text-generation",
58
+ model="nidum/Nidum-Llama-3.2-3B-Uncensored",
59
+ model_kwargs={"torch_dtype": torch.bfloat16},
60
+ device="cuda", # replace with "mps" to run on a Mac device
61
+ )
62
+
63
+ messages = [
64
+ {"role": "user", "content": "Tell me something fascinating."},
65
+ ]
66
+
67
+ outputs = pipe(messages, max_new_tokens=256)
68
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
69
+ print(assistant_response)
70
+ ```
71
+
72
+ ---
73
+ #### Quantized Models Available for Download
74
+
75
+ | **Quantized Model Version** | **Description** |
76
+ |-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
77
+ | [**Nidum-Llama-3.2-3B-Uncensored-F16.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/Nidum-Llama-3.2-3B-Uncensored-F16.gguf) | Full 16-bit floating point precision for maximum accuracy on high-end GPUs. |
78
+ | [**model-Q2_K.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q2_K.gguf) | Optimized for minimal memory usage with lower precision, suitable for edge cases.|
79
+ | [**model-Q3_K_L.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q3_K_L.gguf) | Balanced precision with enhanced memory efficiency for medium-range devices. |
80
+ | [**model-Q3_K_M.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q3_K_M.gguf) | Mid-range quantization for moderate precision and memory usage balance. |
81
+ | [**model-Q3_K_S.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q3_K_S.gguf) | Smaller quantization steps, offering moderate precision with reduced memory use.|
82
+ | [**model-Q4_0_4_4.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_0_4_4.gguf) | Performance-optimized for low memory, ideal for lightweight deployment. |
83
+ | [**model-Q4_0_4_8.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_0_4_8.gguf) | Extended quantization balancing memory use and inference speed. |
84
+ | [**model-Q4_0_8_8.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_0_8_8.gguf) | Advanced memory precision targeting larger contexts. |
85
+ | [**model-Q4_K_M.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_K_M.gguf) | High-efficiency quantization for moderate GPU resources. |
86
+ | [**model-Q4_K_S.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_K_S.gguf) | Optimized for smaller-scale operations with compact memory footprint. |
87
+ | [**model-Q5_K_M.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q5_K_M.gguf) | Balances performance and precision, ideal for robust inferencing environments. |
88
+ | [**model-Q5_K_S.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q5_K_S.gguf) | Moderate quantization targeting performance with minimal resource usage. |
89
+ | [**model-Q6_K.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q6_K.gguf) | High-precision quantization for accurate and stable inferencing tasks. |
90
+ | [**model-TQ1_0.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-TQ1_0.gguf) | Experimental quantization for targeted applications in test environments. |
91
+ | [**model-TQ2_0.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-TQ2_0.gguf) | High-performance tuning for experimental use cases and flexible precision. |
92
+
93
+ ---
94
+ ### Datasets and Fine-Tuning
95
+
96
+ The following fine-tuning datasets are leveraged to enhance specific model capabilities:
97
+
98
+ - **Uncensored Data**: Enables unrestricted and uninhibited responses.
99
+ - **RAG-Based Fine-Tuning**: Optimizes retrieval-augmented generation for knowledge-intensive tasks.
100
+ - **Long Context Fine-Tuning**: Enhances the model's ability to process and maintain coherence in extended conversations.
101
+ - **Math-Instruct Data**: Specially curated for precise and contextually accurate mathematical reasoning.
102
+
103
+ ---
104
+
105
+ ### Benchmarks
106
+
107
+ After fine-tuning with **uncensored data**, **Nidum-Llama-3.2-3B** demonstrates **superior performance compared to the original LLaMA model**, particularly in accuracy and handling diverse, unrestricted scenarios.
108
+
109
+ #### Benchmark Summary Table
110
+
111
+ | **Benchmark** | **Metric** | **LLaMA 3B** | **Nidum 3B** | **Observation** |
112
+ |-------------------|-----------------------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------|
113
+ | **GPQA** | Exact Match (Flexible) | 0.3 | 0.5 | Nidum 3B demonstrates significant improvement, particularly in **generative tasks**. |
114
+ | | Accuracy | 0.4 | 0.5 | Consistent improvement, especially in **zero-shot** scenarios. |
115
+ | **HellaSwag** | Accuracy | 0.3 | 0.4 | Better performance in **common sense reasoning** tasks. |
116
+ | | Normalized Accuracy | 0.3 | 0.4 | Enhanced ability to understand and predict context in sentence completion. |
117
+ | | Normalized Accuracy (Stderr) | 0.15275 | 0.1633 | Slightly improved consistency in normalized accuracy. |
118
+ | | Accuracy (Stderr) | 0.15275 | 0.1633 | Shows robustness in reasoning accuracy compared to LLaMA 3B. |
119
+
120
+ ---
121
+
122
+ ### Insights:
123
+ 1. **GPQA Results**: Fine-tuning on uncensored data has boosted **Nidum 3B's Exact Match and Accuracy**, particularly excelling in **generative** and **zero-shot** tasks involving domain-specific knowledge.
124
+ 2. **HellaSwag Results**: **Nidum 3B** consistently outperforms **LLaMA 3B** in **common sense reasoning benchmarks**, indicating enhanced contextual and semantic understanding.
125
+
126
+ ---
127
+
128
+ ### Contributing
129
+
130
+ We welcome contributions to improve and extend the model’s capabilities. Stay tuned for updates on how to contribute.
131
+
132
+ ---
133
+
134
+ ### Contact
135
+
136
+ For inquiries, collaborations, or further information, please reach out to us at **info@nidum.ai**.
137
+
138
+ ---
139
+
140
+ ### Explore the Possibilities
141
+
142
+ Dive into unrestricted creativity and innovation with **Nidum-Llama-3.2-3B-Uncensored**!