nielsr HF staff commited on
Commit
e68ba5f
1 Parent(s): c9d5842

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - funsd
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-funsd
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: funsd
19
+ type: funsd
20
+ args: funsd
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.9026198714780029
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.913
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9077802634849614
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.8330271015158475
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # layoutlmv3-finetuned-funsd
40
+
41
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 1.1164
44
+ - Precision: 0.9026
45
+ - Recall: 0.913
46
+ - F1: 0.9078
47
+ - Accuracy: 0.8330
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 1e-05
67
+ - train_batch_size: 16
68
+ - eval_batch_size: 16
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - training_steps: 1000
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
79
+ | No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
80
+ | No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
81
+ | No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
82
+ | 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
83
+ | 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
84
+ | 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
85
+ | 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
86
+ | 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
87
+ | 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.19.0.dev0
93
+ - Pytorch 1.11.0+cu113
94
+ - Datasets 2.0.0
95
+ - Tokenizers 0.11.6