File size: 758 Bytes
d8d6c9f 62f5b61 d8d6c9f 9d994ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
---
language: en
tags:
- transfer-learning
- bert
- hatespeech
- covid19
license: "mit"
datasets:
- COVID-HATE
metrics:
- f1-score
---
Since the start of the COVID-19 pandemic, there has been a widespread increase in the amount of hate-speech being propagated online against the Asian community. This project builds upon and explores the work of He et al. Their COVID-HATE dataset contains 206 million tweets focused around anti-Asian hate speech. Using tweet data from before the COVID-19 pandemic, as well as the COVID-HATE dataset from He et al, we performed transfer learning. We tested several different models, including BERT, RoBERTa, LSTM, and BERT-CNN.
Some of these models hindered the performance of He et al’s model, while others improved it.
|