nikhilbh's picture
Uploaded after manual correction in README
aabc2d0
|
raw
history blame
2.51 kB
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large v2 Custom Hi - Nikhil Bhargava
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 hi
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.21857275882502328

Whisper Large v2 Custom Hi - Nikhil Bhargava

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 hi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3389
  • Wer: 0.2186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0523 2.44 500 0.2123 0.2664
0.0187 4.89 1000 0.2237 0.2370
0.0041 7.33 1500 0.2647 0.2310
0.0028 9.78 2000 0.2904 0.2344
0.0015 12.22 2500 0.2908 0.2268
0.0003 14.67 3000 0.3022 0.2197
0.0003 17.11 3500 0.3249 0.2195
0.0003 19.56 4000 0.3217 0.2161
0.0 22.0 4500 0.3335 0.2181
0.0 24.45 5000 0.3389 0.2186

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3