--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v2-custom-hi results: [] --- # whisper-large-v2-custom-hi This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3389 - Wer: 0.2186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0523 | 2.44 | 500 | 0.2123 | 0.2664 | | 0.0187 | 4.89 | 1000 | 0.2237 | 0.2370 | | 0.0041 | 7.33 | 1500 | 0.2647 | 0.2310 | | 0.0028 | 9.78 | 2000 | 0.2904 | 0.2344 | | 0.0015 | 12.22 | 2500 | 0.2908 | 0.2268 | | 0.0003 | 14.67 | 3000 | 0.3022 | 0.2197 | | 0.0003 | 17.11 | 3500 | 0.3249 | 0.2195 | | 0.0003 | 19.56 | 4000 | 0.3217 | 0.2161 | | 0.0 | 22.0 | 4500 | 0.3335 | 0.2181 | | 0.0 | 24.45 | 5000 | 0.3389 | 0.2186 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3