--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: SCIFACT_inference_model results: [] --- # SCIFACT_inference_model This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2496 - Accuracy: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 378 | 1.0485 | 0.4724 | | 1.0382 | 2.0 | 756 | 1.3964 | 0.6063 | | 0.835 | 3.0 | 1134 | 0.9168 | 0.8268 | | 0.6801 | 4.0 | 1512 | 0.7524 | 0.8425 | | 0.6801 | 5.0 | 1890 | 1.0672 | 0.8346 | | 0.4291 | 6.0 | 2268 | 0.9599 | 0.8425 | | 0.2604 | 7.0 | 2646 | 0.8691 | 0.8661 | | 0.1932 | 8.0 | 3024 | 1.3162 | 0.8268 | | 0.1932 | 9.0 | 3402 | 1.3200 | 0.8583 | | 0.0974 | 10.0 | 3780 | 1.1566 | 0.8740 | | 0.1051 | 11.0 | 4158 | 1.1568 | 0.8819 | | 0.0433 | 12.0 | 4536 | 1.2013 | 0.8661 | | 0.0433 | 13.0 | 4914 | 1.1557 | 0.8819 | | 0.034 | 14.0 | 5292 | 1.3044 | 0.8661 | | 0.0303 | 15.0 | 5670 | 1.2496 | 0.8819 | ### Framework versions - Transformers 4.34.1 - Pytorch 1.13.1+cu116 - Datasets 2.14.6 - Tokenizers 0.14.1