File size: 13,717 Bytes
72e5bba
 
b88cbb2
 
72e5bba
 
 
 
 
 
 
bdeb9bb
 
 
 
 
 
 
72e5bba
 
 
 
b88cbb2
 
72e5bba
 
 
 
 
 
 
 
 
 
 
b88cbb2
 
72e5bba
 
 
3b2c9a6
 
12cb57d
 
 
 
 
 
 
 
 
68d7480
12cb57d
 
bc43590
12cb57d
 
 
 
72e5bba
 
 
76517ea
b88cbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e5bba
 
 
 
 
 
12cb57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e5bba
 
 
 
 
 
 
 
 
 
 
b88cbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a23e1
 
4929dd1
 
 
e12e4f3
 
4929dd1
 
84a23e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b88cbb2
72e5bba
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
license: mit
language: 
- en
metrics:
- accuracy
- precision
- recall
model-index:
- name: PolicyBERTa-7d
  results: []
widget: 
- text: "Russia must end the war."
- text: "Democratic institutions must be supported."
- text: "The state must fight political corruption."
- text: "Our energy economy must be nationalised."
- text: "We must increase social spending."

---

# PolicyBERTa-7d

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). It was inspired by the model from [Laurer (2020)](https://huggingface.co/MoritzLaurer/policy-distilbert-7d).

It achieves the following results on the evaluation set:
- Loss: 0.8549
- Accuracy: 0.7059
- F1-micro: 0.7059
- F1-macro: 0.6683
- F1-weighted: 0.7033
- Precision: 0.7059
- Recall: 0.7059

## Model description

This model was trained on 115,943 manually annotated sentences to classify text into one of seven political categories: "external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society" and "social groups".


## Intended uses & limitations

The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance.

```python
from transformers import pipeline
import pandas as pd

classifier = pipeline(
    task="text-classification",
    model="niksmer/PolicyBERTa-7d")

# Load text data you want to classify
text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list()

# Inference
output = classifier(text)

# Print output
pd.DataFrame(output).head()
```

## Training and evaluation data

PolicyBERTa-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. 

| Country        | Count manifestos | Count sentences | Time span        |
|----------------|------------------|-----------------|--------------------|
| Australia      | 18               | 14,887          | 2010-2016          |
| Ireland        | 23               | 24,966          | 2007-2016          |
| Canada         | 14               | 12,344          | 2004-2008 & 2015   |
| New Zealand    | 46               | 35,079          | 1993-2017          |
| South Africa   | 29               | 13,334          | 1994-2019          |
| USA            | 9                | 13,188          | 1992   & 2004-2020 |
| United Kingdom | 34               | 30,936          | 1997-2019          |

Canadian manifestos between 2004 and 2008 are used as test data.


The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each domain. 

### Tain data

Train data was higly imbalanced.

| Label | Description | Count |
|------------|--------------|--------|
| 0          | external relations       | 7,640 |
| 1          | freedom and democracy       | 5,880 |
| 2          | political system       | 11,234 |
| 3          | economy | 29,218 |
| 4          | welfare and quality of life       | 37,200 |
| 5          | fabric of society | 13,594 |
| 6          | social groups       | 11,177 |

Overall count: 115,943

### Validation data

The validation was created by chance.

| Label | Description | Count |
|------------|--------------|--------|
| 0          | external relations       | 1,345 |
| 1          | freedom and democracy       | 1,043 |
| 2          | political system       | 2,038 |
| 3          | economy | 5,140 |
| 4          | welfare and quality of life       | 6,554 |
| 5          | fabric of society | 2,384 |
| 6          | social groups       | 1,957 |

Overall count: 20,461

## Test data

The test dataset contains ten canadian manifestos between 2004 and 2008.

| Label | Description | Count |
|------------|--------------|--------|
| 0          | external relations       | 824 |
| 1          | freedom and democracy       | 296 |
| 2          | political system       | 1,041 |
| 3          | economy | 2,188 |
| 4          | welfare and quality of life       | 2,654 |
| 5          | fabric of society | 940 |
| 6          | social groups       | 387 |

Overall count: 8,330

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
```
training_args = TrainingArguments(
    warmup_steps=0,
    weight_decay=0.1, 
    learning_rate=1e-05,
    fp16 = True,
    evaluation_strategy="epoch",
    num_train_epochs=5,
    per_device_train_batch_size=16,
    overwrite_output_dir=True,
    per_device_eval_batch_size=16,
    save_strategy="no",
    logging_dir='logs',   
    logging_strategy= 'steps',     
    logging_steps=10,
    push_to_hub=True,
    hub_strategy="end")
```

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:|
| 0.9154        | 1.0   | 1812 | 0.8984          | 0.6785   | 0.6785   | 0.6383   | 0.6772      | 0.6785    | 0.6785 |
| 0.8374        | 2.0   | 3624 | 0.8569          | 0.6957   | 0.6957   | 0.6529   | 0.6914      | 0.6957    | 0.6957 |
| 0.7053        | 3.0   | 5436 | 0.8582          | 0.7019   | 0.7019   | 0.6594   | 0.6967      | 0.7019    | 0.7019 |
| 0.7178        | 4.0   | 7248 | 0.8488          | 0.7030   | 0.7030   | 0.6662   | 0.7011      | 0.7030    | 0.7030 |
| 0.6688        | 5.0   | 9060 | 0.8549          | 0.7059   | 0.7059   | 0.6683   | 0.7033      | 0.7059    | 0.7059 |

### Validation evaluation

| Model          | Micro F1-Score | Macro F1-Score | Weighted F1-Score |
|----------------|----------------|----------------|-------------------|
| PolicyBERTa-7d |  0.71           | 0.67           | 0.70             |



### Test evaluation

| Model          | Micro F1-Score | Macro F1-Score | Weighted F1-Score |
|----------------|----------------|----------------|-------------------|
| PolicyBERTa-7d | 0.65           | 0.60           | 0.65              |


### Evaluation per category

| Label                       | Validation F1-Score | Test F1-Score |
|-----------------------------|---------------------|---------------|
| external relations          | 0.76                | 0.70          |
| freedom and democracy       | 0.61                | 0.55          |
| political system            | 0.55                | 0.55          |
| economy                     | 0.74                | 0.67          |
| welfare and quality of life | 0.77                | 0.72          |
| fabric of society           | 0.67                | 0.60          |
| social groups               | 0.58                | 0.41          |

### Evaluation based on saliency theory

Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent.
Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology.

The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). But PolicyBERTa isn't fine-tuned to predict the rile-index, if you're interested in that, check [ManiBERT](https://huggingface.co/niksmer/ManiBERT) or [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE).

In the following table, the predicted and original share of the individual policy domains are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original shares is 0.965. 

|     Party-ID |     Year    |     Type      | Share external relations | Share freedom and democracy | Share political system | Share economy  | Share welfare and quality of life | Share fabric of society | Share social groups |
|--------------|-------------|---------------|--------------------------|-----------------------------|------------------------|----------------|-----------------------------------|-------------------------|---------------------|
|     62320    |     2004    |     Predicted |     7.1%                 |     4.8%                    |     13.2%              |     20.3%      |     35.2%                         |     9.6%                |     9.8%            |
|              |             |     Original  |     10.2%                |     2.5%                    |     13.7%              |     23.8%      |     31.7%                         |     11.6%               |     6.4%            |
|     62320    |     2006    |     Predicted |     2.9%                 |     4.7%                    |     16.4%              |     18.9%      |     38.3%                         |     11.9%               |     6.9%            |
|              |             |     Original  |     5.6%                 |     5.0%                    |     15.8%              |     20.7%      |     38.7%                         |     9.3%                |     4.9%            |
|     62320    |     2008    |     Predicted |     6.8%                 |     4.7%                    |     6.2%               |     24.7%      |     38.3%                         |     10.3%               |     9.0%            |
|              |             |     Original  |     5.6%                 |     3.7%                    |     8.2%               |     33.1%      |     29.5%                         |     11.7%               |     4.3%            |
|     62420    |     2004    |     Predicted |     9.7%                 |     3.5%                    |     14.5%              |     24.7%      |     34.8%                         |     8.5%                |     4.3%            |
|              |             |     Original  |     12.6%                |     1.3%                    |     18.8%              |     23.0%      |     33.2%                         |     9.0%                |     2.0%            |
|     62420    |     2006    |     Predicted |     9.5%                 |     2.2%                    |     7.9%               |     27.8%      |     34.8%                         |     9.2%                |     8.7%            |
|              |             |     Original  |     10.6%                |     2.5%                    |     9.6%               |     29.7%      |     33.1%                         |     8.3%                |     6.2%            |
|     62420    |     2008    |     Predicted |     0.7%                 |     0.5%                    |     3.5%               |     41.7%      |     46.4%                         |     3.7%                |     3.5%            |
|              |             |     Original  |     2.0%                 |     0.2%                    |     4.4%               |     33.3%      |     45.9%                         |     7.7%                |     6.4%            |
|     62623    |     2004    |     Predicted |     7.1%                 |     11.4%                   |     24.5%              |     17.6%      |     21.5%                         |     13.6%               |     4.3%            |
|              |             |     Original  |     8.4%                 |     6.7%                    |     28.8%              |     17.4%      |     18.7%                         |     15.5%               |     4.5%            |
|     62623    |     2006    |     Predicted |     5.6%                 |     8.5%                    |     23.6%              |     15.6%      |     14.8%                         |     24.3%               |     7.6%            |
|              |             |     Original  |     5.0%                 |     8.9%                    |     22.2%              |     17.4%      |     17.2%                         |     25.7%               |     3.6%            |
|     62623    |     2008    |     Predicted |     5.0%                 |     4.4%                    |     12.2%              |     33.1%      |     21.9%                         |     17.5%               |     5.9%            |
|              |             |     Original  |     5.6%                 |     2.2%                    |     11.6%              |     37.8%      |     17.8%                         |     20.9%               |     4.1%            |
|     62110    |     2008    |     Predicted |     10.0%                |     3.1%                    |     6.8%               |     22.7%      |     41.3%                         |     10.1%               |     6.0%            |
|              |             |     Original  |     13.4%                |     3.3%                    |     7.7%               |     26.9%      |     35.6%                         |     8.9%                |     4.3%            |

### Framework versions

- Transformers 4.16.2
- Pytorch 1.9.0+cu102
- Datasets 1.8.0
- Tokenizers 0.10.3