nimaafshar commited on
Commit
ea0b984
1 Parent(s): d816f9e

readme created

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ParsBERT digikala sentiment analysis model fine-tuned on around 600,000 Persian tweets.
2
+ # How to use
3
+ at least you need 650 megabytes of ram and disk in order to load the model.
4
+ tensorflow, transformers and numpy library
5
+
6
+ ## Loading model
7
+ ```python
8
+ import numpy as np
9
+ from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
10
+ #loading model
11
+ tokenizer = AutoTokenizer.from_pretrained("nimaafshar/parsbert-fa-sentiment-twitter")
12
+
13
+ model = TFAutoModelForSequenceClassification.from_pretrained("nimaafshar/parsbert-fa-sentiment-twitter")
14
+ classes = ["negative","neutral","positive"]
15
+ ```
16
+ ## Using Model
17
+ ```python
18
+
19
+ #using model
20
+ sequences = [".غذا خیلی افتضاح بود متاسفم برای مدیریت رستورن خیلی بد بود.",
21
+ "خیلی خوشمزده و عالی بود عالی",
22
+ "می‌تونم اسمتونو بپرسم؟"
23
+ ]
24
+
25
+ for sequence in sequences:
26
+ inputs = tokenizer(sequence, return_tensors="tf")
27
+ classification_logits = model(inputs)[0]
28
+ results = tf.nn.softmax(classification_logits, axis=1).numpy()[0]
29
+ print(classes[np.argmax(results)])
30
+ percentages = np.around(results*100)
31
+ print(percentages)
32
+ ```