nkasmanoff
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -27,6 +27,48 @@ Basically, this model is meant to be a means of allowing very small LLMs (i.e. 8
|
|
27 |
|
28 |
All limitations and biases are inherited from the parent model.
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
### Framework versions
|
31 |
|
32 |
- Transformers 4.41.1
|
|
|
27 |
|
28 |
All limitations and biases are inherited from the parent model.
|
29 |
|
30 |
+
### Example Usage
|
31 |
+
|
32 |
+
from transformers import AutoTokenizer
|
33 |
+
from transformers import AutoModelForSequenceClassification
|
34 |
+
|
35 |
+
key_tools = ['take_picture', 'no_tool_needed',
|
36 |
+
'check_news', 'check_weather', 'play_spotify']
|
37 |
+
|
38 |
+
|
39 |
+
def get_id2tool_name(id, key_tools):
|
40 |
+
return key_tools[id]
|
41 |
+
|
42 |
+
|
43 |
+
def remove_any_non_alphanumeric_characters(text):
|
44 |
+
return ''.join(e for e in text if e.isalnum() or e.isspace())
|
45 |
+
|
46 |
+
|
47 |
+
def load_model():
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
49 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
50 |
+
"nkasmanoff/tool-bert")
|
51 |
+
|
52 |
+
model.eval()
|
53 |
+
return model, tokenizer
|
54 |
+
|
55 |
+
|
56 |
+
def predict_tool(question, model, tokenizer):
|
57 |
+
question = remove_any_non_alphanumeric_characters(question)
|
58 |
+
inputs = tokenizer(question, return_tensors="pt")
|
59 |
+
|
60 |
+
outputs = model(**inputs)
|
61 |
+
|
62 |
+
logits = outputs.logits
|
63 |
+
return get_id2tool_name(logits.argmax().item(), key_tools)
|
64 |
+
|
65 |
+
model, tokenizer = load_model()
|
66 |
+
|
67 |
+
question = "What's the weather outside?"
|
68 |
+
|
69 |
+
predict_tool(question, model, tokenizer)
|
70 |
+
> check_weather
|
71 |
+
|
72 |
### Framework versions
|
73 |
|
74 |
- Transformers 4.41.1
|