Upload StableDiffusion3InstructPix2PixPipeline
Browse files- README.md +198 -0
- model_index.json +41 -0
- pipeline.py +983 -0
- scheduler/scheduler_config.json +6 -0
- scheduler/scheduling_flow_match_euler_discrete.py +287 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- text_encoder_2/config.json +25 -0
- text_encoder_2/model.safetensors +3 -0
- text_encoder_3/config.json +32 -0
- text_encoder_3/model-00001-of-00003.safetensors +3 -0
- text_encoder_3/model-00002-of-00003.safetensors +3 -0
- text_encoder_3/model-00003-of-00003.safetensors +3 -0
- text_encoder_3/model.safetensors.index.json +226 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +30 -0
- tokenizer/tokenizer_config.json +30 -0
- tokenizer/vocab.json +0 -0
- tokenizer_2/merges.txt +0 -0
- tokenizer_2/special_tokens_map.json +30 -0
- tokenizer_2/tokenizer_config.json +38 -0
- tokenizer_2/vocab.json +0 -0
- tokenizer_3/special_tokens_map.json +125 -0
- tokenizer_3/spiece.model +3 -0
- tokenizer_3/tokenizer.json +0 -0
- tokenizer_3/tokenizer_config.json +940 -0
- transformer/config.json +16 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +38 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: diffusers
|
3 |
+
---
|
4 |
+
|
5 |
+
# Model Card for Model ID
|
6 |
+
|
7 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
## Model Details
|
12 |
+
|
13 |
+
### Model Description
|
14 |
+
|
15 |
+
<!-- Provide a longer summary of what this model is. -->
|
16 |
+
|
17 |
+
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
|
18 |
+
|
19 |
+
- **Developed by:** [More Information Needed]
|
20 |
+
- **Funded by [optional]:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Dataset Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
model_index.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusion3InstructPix2PixPipeline",
|
3 |
+
"_diffusers_version": "0.30.1",
|
4 |
+
"_name_or_path": "nllg/ultraedit",
|
5 |
+
"scheduler": [
|
6 |
+
"scheduling_flow_match_euler_discrete",
|
7 |
+
"FlowMatchEulerDiscreteScheduler"
|
8 |
+
],
|
9 |
+
"text_encoder": [
|
10 |
+
"transformers",
|
11 |
+
"CLIPTextModelWithProjection"
|
12 |
+
],
|
13 |
+
"text_encoder_2": [
|
14 |
+
"transformers",
|
15 |
+
"CLIPTextModelWithProjection"
|
16 |
+
],
|
17 |
+
"text_encoder_3": [
|
18 |
+
"transformers",
|
19 |
+
"T5EncoderModel"
|
20 |
+
],
|
21 |
+
"tokenizer": [
|
22 |
+
"transformers",
|
23 |
+
"CLIPTokenizer"
|
24 |
+
],
|
25 |
+
"tokenizer_2": [
|
26 |
+
"transformers",
|
27 |
+
"CLIPTokenizer"
|
28 |
+
],
|
29 |
+
"tokenizer_3": [
|
30 |
+
"transformers",
|
31 |
+
"T5TokenizerFast"
|
32 |
+
],
|
33 |
+
"transformer": [
|
34 |
+
"diffusers",
|
35 |
+
"SD3Transformer2DModel"
|
36 |
+
],
|
37 |
+
"vae": [
|
38 |
+
"diffusers",
|
39 |
+
"AutoencoderKL"
|
40 |
+
]
|
41 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,983 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
16 |
+
|
17 |
+
import PIL.Image
|
18 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
19 |
+
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
|
20 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
21 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
22 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
23 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_output import (
|
24 |
+
StableDiffusion3PipelineOutput,
|
25 |
+
)
|
26 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img import (
|
27 |
+
retrieve_latents,
|
28 |
+
retrieve_timesteps,
|
29 |
+
)
|
30 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
31 |
+
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
32 |
+
from diffusers.utils import deprecate, logging
|
33 |
+
from diffusers.utils.torch_utils import randn_tensor
|
34 |
+
import torch
|
35 |
+
from transformers import (
|
36 |
+
CLIPTextModelWithProjection,
|
37 |
+
CLIPTokenizer,
|
38 |
+
T5EncoderModel,
|
39 |
+
T5TokenizerFast,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
if is_torch_xla_available():
|
44 |
+
import torch_xla.core.xla_model as xm
|
45 |
+
XLA_AVAILABLE = True
|
46 |
+
else:
|
47 |
+
XLA_AVAILABLE = False
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """
|
53 |
+
Examples:
|
54 |
+
```py
|
55 |
+
>>> import torch
|
56 |
+
>>> from diffusers import StableDiffusion3Pipeline
|
57 |
+
|
58 |
+
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
|
59 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
60 |
+
... )
|
61 |
+
>>> pipe.to("cuda")
|
62 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
63 |
+
>>> image = pipe(prompt).images[0]
|
64 |
+
>>> image.save("sd3.png")
|
65 |
+
```
|
66 |
+
"""
|
67 |
+
|
68 |
+
|
69 |
+
class StableDiffusion3InstructPix2PixPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
|
70 |
+
r"""
|
71 |
+
Args:
|
72 |
+
transformer ([`SD3Transformer2DModel`]):
|
73 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
74 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
75 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
76 |
+
vae ([`AutoencoderKL`]):
|
77 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
78 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
79 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
80 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
81 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
82 |
+
as its dimension.
|
83 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
84 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
85 |
+
specifically the
|
86 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
87 |
+
variant.
|
88 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
89 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
90 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
91 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
92 |
+
tokenizer (`CLIPTokenizer`):
|
93 |
+
Tokenizer of class
|
94 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
95 |
+
tokenizer_2 (`CLIPTokenizer`):
|
96 |
+
Second Tokenizer of class
|
97 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
98 |
+
tokenizer_3 (`T5TokenizerFast`):
|
99 |
+
Tokenizer of class
|
100 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
101 |
+
"""
|
102 |
+
|
103 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
|
104 |
+
_optional_components = []
|
105 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
transformer: SD3Transformer2DModel,
|
110 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
111 |
+
vae: AutoencoderKL,
|
112 |
+
text_encoder: CLIPTextModelWithProjection,
|
113 |
+
tokenizer: CLIPTokenizer,
|
114 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
115 |
+
tokenizer_2: CLIPTokenizer,
|
116 |
+
text_encoder_3: T5EncoderModel,
|
117 |
+
tokenizer_3: T5TokenizerFast,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
|
121 |
+
self.register_modules(
|
122 |
+
vae=vae,
|
123 |
+
text_encoder=text_encoder,
|
124 |
+
text_encoder_2=text_encoder_2,
|
125 |
+
text_encoder_3=text_encoder_3,
|
126 |
+
tokenizer=tokenizer,
|
127 |
+
tokenizer_2=tokenizer_2,
|
128 |
+
tokenizer_3=tokenizer_3,
|
129 |
+
transformer=transformer,
|
130 |
+
scheduler=scheduler,
|
131 |
+
)
|
132 |
+
self.vae_scale_factor = (
|
133 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
134 |
+
)
|
135 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
136 |
+
self.tokenizer_max_length = (
|
137 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
138 |
+
)
|
139 |
+
self.default_sample_size = (
|
140 |
+
self.transformer.config.sample_size
|
141 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
142 |
+
else 128
|
143 |
+
)
|
144 |
+
|
145 |
+
def _get_t5_prompt_embeds(
|
146 |
+
self,
|
147 |
+
prompt: Union[str, List[str]] = None,
|
148 |
+
num_images_per_prompt: int = 1,
|
149 |
+
device: Optional[torch.device] = None,
|
150 |
+
dtype: Optional[torch.dtype] = None,
|
151 |
+
):
|
152 |
+
device = device or self._execution_device
|
153 |
+
dtype = dtype or self.text_encoder.dtype
|
154 |
+
|
155 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
156 |
+
batch_size = len(prompt)
|
157 |
+
|
158 |
+
if self.text_encoder_3 is None:
|
159 |
+
return torch.zeros(
|
160 |
+
(batch_size, self.tokenizer_max_length, self.transformer.config.joint_attention_dim),
|
161 |
+
device=device,
|
162 |
+
dtype=dtype,
|
163 |
+
)
|
164 |
+
|
165 |
+
text_inputs = self.tokenizer_3(
|
166 |
+
prompt,
|
167 |
+
padding="max_length",
|
168 |
+
max_length=self.tokenizer_max_length,
|
169 |
+
truncation=True,
|
170 |
+
add_special_tokens=True,
|
171 |
+
return_tensors="pt",
|
172 |
+
)
|
173 |
+
text_input_ids = text_inputs.input_ids
|
174 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
175 |
+
|
176 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
177 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
178 |
+
logger.warning(
|
179 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
180 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
181 |
+
)
|
182 |
+
|
183 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
184 |
+
|
185 |
+
dtype = self.text_encoder_3.dtype
|
186 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
187 |
+
|
188 |
+
_, seq_len, _ = prompt_embeds.shape
|
189 |
+
|
190 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
191 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
192 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
193 |
+
|
194 |
+
return prompt_embeds
|
195 |
+
|
196 |
+
def _get_clip_prompt_embeds(
|
197 |
+
self,
|
198 |
+
prompt: Union[str, List[str]],
|
199 |
+
num_images_per_prompt: int = 1,
|
200 |
+
device: Optional[torch.device] = None,
|
201 |
+
clip_skip: Optional[int] = None,
|
202 |
+
clip_model_index: int = 0,
|
203 |
+
):
|
204 |
+
device = device or self._execution_device
|
205 |
+
|
206 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
207 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
208 |
+
|
209 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
210 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
211 |
+
|
212 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
213 |
+
batch_size = len(prompt)
|
214 |
+
|
215 |
+
text_inputs = tokenizer(
|
216 |
+
prompt,
|
217 |
+
padding="max_length",
|
218 |
+
max_length=self.tokenizer_max_length,
|
219 |
+
truncation=True,
|
220 |
+
return_tensors="pt",
|
221 |
+
)
|
222 |
+
|
223 |
+
text_input_ids = text_inputs.input_ids
|
224 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
225 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
226 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
227 |
+
logger.warning(
|
228 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
229 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
230 |
+
)
|
231 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
232 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
233 |
+
|
234 |
+
if clip_skip is None:
|
235 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
236 |
+
else:
|
237 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
238 |
+
|
239 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
240 |
+
|
241 |
+
_, seq_len, _ = prompt_embeds.shape
|
242 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
243 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
244 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
245 |
+
|
246 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
247 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
248 |
+
|
249 |
+
return prompt_embeds, pooled_prompt_embeds
|
250 |
+
|
251 |
+
def encode_prompt(
|
252 |
+
self,
|
253 |
+
prompt: Union[str, List[str]],
|
254 |
+
prompt_2: Union[str, List[str]],
|
255 |
+
prompt_3: Union[str, List[str]],
|
256 |
+
device: Optional[torch.device] = None,
|
257 |
+
num_images_per_prompt: int = 1,
|
258 |
+
do_classifier_free_guidance: bool = True,
|
259 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
260 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
261 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
262 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
263 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
264 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
265 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
266 |
+
clip_skip: Optional[int] = None,
|
267 |
+
):
|
268 |
+
r"""
|
269 |
+
|
270 |
+
Args:
|
271 |
+
prompt (`str` or `List[str]`, *optional*):
|
272 |
+
prompt to be encoded
|
273 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
274 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
275 |
+
used in all text-encoders
|
276 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
277 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
278 |
+
used in all text-encoders
|
279 |
+
device: (`torch.device`):
|
280 |
+
torch device
|
281 |
+
num_images_per_prompt (`int`):
|
282 |
+
number of images that should be generated per prompt
|
283 |
+
do_classifier_free_guidance (`bool`):
|
284 |
+
whether to use classifier free guidance or not
|
285 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
286 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
287 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
288 |
+
less than `1`).
|
289 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
290 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
291 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
292 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
293 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
294 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
|
295 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
296 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
297 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
298 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
299 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
300 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
301 |
+
argument.
|
302 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
303 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
304 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
305 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
306 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
307 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
308 |
+
input argument.
|
309 |
+
clip_skip (`int`, *optional*):
|
310 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
311 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
312 |
+
"""
|
313 |
+
device = device or self._execution_device
|
314 |
+
|
315 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
316 |
+
if prompt is not None:
|
317 |
+
batch_size = len(prompt)
|
318 |
+
else:
|
319 |
+
batch_size = prompt_embeds.shape[0]
|
320 |
+
|
321 |
+
if prompt_embeds is None:
|
322 |
+
prompt_2 = prompt_2 or prompt
|
323 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
324 |
+
|
325 |
+
prompt_3 = prompt_3 or prompt
|
326 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
327 |
+
|
328 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
329 |
+
prompt=prompt,
|
330 |
+
device=device,
|
331 |
+
num_images_per_prompt=num_images_per_prompt,
|
332 |
+
clip_skip=clip_skip,
|
333 |
+
clip_model_index=0,
|
334 |
+
)
|
335 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
336 |
+
prompt=prompt_2,
|
337 |
+
device=device,
|
338 |
+
num_images_per_prompt=num_images_per_prompt,
|
339 |
+
clip_skip=clip_skip,
|
340 |
+
clip_model_index=1,
|
341 |
+
)
|
342 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
343 |
+
|
344 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
345 |
+
prompt=prompt_3,
|
346 |
+
num_images_per_prompt=num_images_per_prompt,
|
347 |
+
device=device,
|
348 |
+
)
|
349 |
+
|
350 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
351 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
352 |
+
)
|
353 |
+
|
354 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
355 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
356 |
+
|
357 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
358 |
+
negative_prompt = negative_prompt or ""
|
359 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
360 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
361 |
+
|
362 |
+
# normalize str to list
|
363 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
364 |
+
negative_prompt_2 = (
|
365 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
366 |
+
)
|
367 |
+
negative_prompt_3 = (
|
368 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
369 |
+
)
|
370 |
+
|
371 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
372 |
+
raise TypeError(
|
373 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
374 |
+
f" {type(prompt)}."
|
375 |
+
)
|
376 |
+
elif batch_size != len(negative_prompt):
|
377 |
+
raise ValueError(
|
378 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
379 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
380 |
+
" the batch size of `prompt`."
|
381 |
+
)
|
382 |
+
|
383 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
384 |
+
negative_prompt,
|
385 |
+
device=device,
|
386 |
+
num_images_per_prompt=num_images_per_prompt,
|
387 |
+
clip_skip=None,
|
388 |
+
clip_model_index=0,
|
389 |
+
)
|
390 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
391 |
+
negative_prompt_2,
|
392 |
+
device=device,
|
393 |
+
num_images_per_prompt=num_images_per_prompt,
|
394 |
+
clip_skip=None,
|
395 |
+
clip_model_index=1,
|
396 |
+
)
|
397 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
398 |
+
|
399 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
400 |
+
prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, device=device
|
401 |
+
)
|
402 |
+
|
403 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
404 |
+
negative_clip_prompt_embeds,
|
405 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
406 |
+
)
|
407 |
+
|
408 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
409 |
+
negative_pooled_prompt_embeds = torch.cat(
|
410 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
411 |
+
)
|
412 |
+
|
413 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
414 |
+
|
415 |
+
def check_inputs(
|
416 |
+
self,
|
417 |
+
prompt,
|
418 |
+
prompt_2,
|
419 |
+
prompt_3,
|
420 |
+
# height,
|
421 |
+
# width,
|
422 |
+
negative_prompt=None,
|
423 |
+
negative_prompt_2=None,
|
424 |
+
negative_prompt_3=None,
|
425 |
+
prompt_embeds=None,
|
426 |
+
negative_prompt_embeds=None,
|
427 |
+
pooled_prompt_embeds=None,
|
428 |
+
negative_pooled_prompt_embeds=None,
|
429 |
+
callback_on_step_end_tensor_inputs=None,
|
430 |
+
):
|
431 |
+
# if height % 8 != 0 or width % 8 != 0:
|
432 |
+
# raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
433 |
+
|
434 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
435 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
436 |
+
):
|
437 |
+
raise ValueError(
|
438 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
439 |
+
)
|
440 |
+
|
441 |
+
if prompt is not None and prompt_embeds is not None:
|
442 |
+
raise ValueError(
|
443 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
444 |
+
" only forward one of the two."
|
445 |
+
)
|
446 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
447 |
+
raise ValueError(
|
448 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
449 |
+
" only forward one of the two."
|
450 |
+
)
|
451 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
452 |
+
raise ValueError(
|
453 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
454 |
+
" only forward one of the two."
|
455 |
+
)
|
456 |
+
elif prompt is None and prompt_embeds is None:
|
457 |
+
raise ValueError(
|
458 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
459 |
+
)
|
460 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
461 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
462 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
463 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
464 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
465 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
466 |
+
|
467 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
468 |
+
raise ValueError(
|
469 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
470 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
471 |
+
)
|
472 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
473 |
+
raise ValueError(
|
474 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
475 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
476 |
+
)
|
477 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
478 |
+
raise ValueError(
|
479 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
480 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
481 |
+
)
|
482 |
+
|
483 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
484 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
485 |
+
raise ValueError(
|
486 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
487 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
488 |
+
f" {negative_prompt_embeds.shape}."
|
489 |
+
)
|
490 |
+
|
491 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
492 |
+
raise ValueError(
|
493 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
494 |
+
)
|
495 |
+
|
496 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
497 |
+
raise ValueError(
|
498 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
499 |
+
)
|
500 |
+
|
501 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
502 |
+
# get the original timestep using init_timestep
|
503 |
+
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
504 |
+
|
505 |
+
t_start = int(max(num_inference_steps - init_timestep, 0))
|
506 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
507 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
508 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
509 |
+
|
510 |
+
return timesteps, num_inference_steps - t_start
|
511 |
+
|
512 |
+
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
513 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
514 |
+
raise ValueError(
|
515 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
516 |
+
)
|
517 |
+
|
518 |
+
image = image.to(device=device, dtype=dtype)
|
519 |
+
|
520 |
+
batch_size = batch_size * num_images_per_prompt
|
521 |
+
if image.shape[1] == self.vae.config.latent_channels:
|
522 |
+
init_latents = image
|
523 |
+
|
524 |
+
else:
|
525 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
526 |
+
raise ValueError(
|
527 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
528 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
529 |
+
)
|
530 |
+
|
531 |
+
elif isinstance(generator, list):
|
532 |
+
init_latents = [
|
533 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
534 |
+
for i in range(batch_size)
|
535 |
+
]
|
536 |
+
init_latents = torch.cat(init_latents, dim=0)
|
537 |
+
else:
|
538 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
539 |
+
|
540 |
+
init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
541 |
+
|
542 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
543 |
+
# expand init_latents for batch_size
|
544 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
545 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
546 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
547 |
+
raise ValueError(
|
548 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
549 |
+
)
|
550 |
+
else:
|
551 |
+
init_latents = torch.cat([init_latents], dim=0)
|
552 |
+
|
553 |
+
shape = init_latents.shape
|
554 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
555 |
+
|
556 |
+
# get latents
|
557 |
+
init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
|
558 |
+
latents = init_latents.to(device=device, dtype=dtype)
|
559 |
+
|
560 |
+
return latents
|
561 |
+
|
562 |
+
def prepare_image_latents(
|
563 |
+
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
564 |
+
):
|
565 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
566 |
+
raise ValueError(
|
567 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
568 |
+
)
|
569 |
+
|
570 |
+
image = image.to(device=device, dtype=dtype)
|
571 |
+
|
572 |
+
batch_size = batch_size * num_images_per_prompt
|
573 |
+
|
574 |
+
if image.shape[1] == self.vae.config.latent_channels:
|
575 |
+
image_latents = image
|
576 |
+
else:
|
577 |
+
image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax")
|
578 |
+
# ? normalize image latents
|
579 |
+
# image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
580 |
+
|
581 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
582 |
+
# expand image_latents for batch_size
|
583 |
+
deprecation_message = (
|
584 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
|
585 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
586 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
587 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
588 |
+
)
|
589 |
+
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
590 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
591 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
592 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
593 |
+
raise ValueError(
|
594 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
image_latents = torch.cat([image_latents], dim=0)
|
598 |
+
|
599 |
+
if do_classifier_free_guidance:
|
600 |
+
uncond_image_latents = torch.zeros_like(image_latents)
|
601 |
+
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)
|
602 |
+
|
603 |
+
return image_latents
|
604 |
+
|
605 |
+
|
606 |
+
|
607 |
+
|
608 |
+
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
@property
|
613 |
+
def guidance_scale(self):
|
614 |
+
return self._guidance_scale
|
615 |
+
@property
|
616 |
+
def image_guidance_scale(self):
|
617 |
+
return self._image_guidance_scale
|
618 |
+
|
619 |
+
@property
|
620 |
+
def clip_skip(self):
|
621 |
+
return self._clip_skip
|
622 |
+
|
623 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
624 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
625 |
+
# corresponds to doing no classifier free guidance.
|
626 |
+
@property
|
627 |
+
def do_classifier_free_guidance(self):
|
628 |
+
return self.guidance_scale > 1.0 and self.image_guidance_scale >= 1.0
|
629 |
+
|
630 |
+
@property
|
631 |
+
def joint_attention_kwargs(self):
|
632 |
+
return self._joint_attention_kwargs
|
633 |
+
|
634 |
+
@property
|
635 |
+
def num_timesteps(self):
|
636 |
+
return self._num_timesteps
|
637 |
+
|
638 |
+
@property
|
639 |
+
def interrupt(self):
|
640 |
+
return self._interrupt
|
641 |
+
|
642 |
+
@torch.no_grad()
|
643 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
644 |
+
def __call__(
|
645 |
+
self,
|
646 |
+
prompt: Union[str, List[str]] = None,
|
647 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
648 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
649 |
+
strength: float = 1.0,
|
650 |
+
image: PipelineImageInput = None,
|
651 |
+
height: Optional[int] = None,
|
652 |
+
width: Optional[int] = None,
|
653 |
+
num_inference_steps: int = 28,
|
654 |
+
timesteps: List[int] = None,
|
655 |
+
guidance_scale: float = 7.0,
|
656 |
+
image_guidance_scale: float = 1.5,
|
657 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
658 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
659 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
660 |
+
num_images_per_prompt: Optional[int] = 1,
|
661 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
662 |
+
latents: Optional[torch.FloatTensor] = None,
|
663 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
664 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
665 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
666 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
667 |
+
output_type: Optional[str] = "pil",
|
668 |
+
return_dict: bool = True,
|
669 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
670 |
+
clip_skip: Optional[int] = None,
|
671 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
672 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
673 |
+
mask_img: Optional[PipelineImageInput] = None,
|
674 |
+
**kwargs
|
675 |
+
):
|
676 |
+
r"""
|
677 |
+
Function invoked when calling the pipeline for generation.
|
678 |
+
|
679 |
+
Args:
|
680 |
+
prompt (`str` or `List[str]`, *optional*):
|
681 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
682 |
+
instead.
|
683 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
684 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
685 |
+
will be used instead
|
686 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
687 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
688 |
+
will be used instead
|
689 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
690 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
691 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
692 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
693 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
694 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
695 |
+
expense of slower inference.
|
696 |
+
timesteps (`List[int]`, *optional*):
|
697 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
698 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
699 |
+
passed will be used. Must be in descending order.
|
700 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
701 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
702 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
703 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
704 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
705 |
+
usually at the expense of lower image quality.
|
706 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
707 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
708 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
709 |
+
less than `1`).
|
710 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
711 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
712 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
713 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
714 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
715 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
716 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
717 |
+
The number of images to generate per prompt.
|
718 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
719 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
720 |
+
to make generation deterministic.
|
721 |
+
latents (`torch.FloatTensor`, *optional*):
|
722 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
723 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
724 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
725 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
726 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
727 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
728 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
729 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
730 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
731 |
+
argument.
|
732 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
733 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
734 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
735 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
736 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
737 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
738 |
+
input argument.
|
739 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
740 |
+
The output format of the generate image. Choose between
|
741 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
742 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
743 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
744 |
+
of a plain tuple.
|
745 |
+
joint_attention_kwargs (`dict`, *optional*):
|
746 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
747 |
+
`self.processor` in
|
748 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
749 |
+
callback_on_step_end (`Callable`, *optional*):
|
750 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
751 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
752 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
753 |
+
`callback_on_step_end_tensor_inputs`.
|
754 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
755 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
756 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
757 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
758 |
+
|
759 |
+
Examples:
|
760 |
+
|
761 |
+
Returns:
|
762 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
763 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
764 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
765 |
+
"""
|
766 |
+
|
767 |
+
# height = height or self.default_sample_size * self.vae_scale_factor
|
768 |
+
# width = width or self.default_sample_size * self.vae_scale_factor
|
769 |
+
|
770 |
+
# 1. Check inputs. Raise error if not correct
|
771 |
+
self.check_inputs(
|
772 |
+
prompt,
|
773 |
+
prompt_2,
|
774 |
+
prompt_3,
|
775 |
+
negative_prompt=negative_prompt,
|
776 |
+
negative_prompt_2=negative_prompt_2,
|
777 |
+
negative_prompt_3=negative_prompt_3,
|
778 |
+
prompt_embeds=prompt_embeds,
|
779 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
780 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
781 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
782 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
783 |
+
)
|
784 |
+
|
785 |
+
self._guidance_scale = guidance_scale
|
786 |
+
self._image_guidance_scale = image_guidance_scale
|
787 |
+
self._clip_skip = clip_skip
|
788 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
789 |
+
self._interrupt = False
|
790 |
+
|
791 |
+
# 2. Define call parameters
|
792 |
+
if prompt is not None and isinstance(prompt, str):
|
793 |
+
batch_size = 1
|
794 |
+
elif prompt is not None and isinstance(prompt, list):
|
795 |
+
batch_size = len(prompt)
|
796 |
+
else:
|
797 |
+
batch_size = prompt_embeds.shape[0]
|
798 |
+
|
799 |
+
device = self._execution_device
|
800 |
+
|
801 |
+
(
|
802 |
+
prompt_embeds,
|
803 |
+
negative_prompt_embeds,
|
804 |
+
pooled_prompt_embeds,
|
805 |
+
negative_pooled_prompt_embeds,
|
806 |
+
) = self.encode_prompt(
|
807 |
+
prompt=prompt,
|
808 |
+
prompt_2=prompt_2,
|
809 |
+
prompt_3=prompt_3,
|
810 |
+
negative_prompt=negative_prompt,
|
811 |
+
negative_prompt_2=negative_prompt_2,
|
812 |
+
negative_prompt_3=negative_prompt_3,
|
813 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
814 |
+
prompt_embeds=prompt_embeds,
|
815 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
816 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
817 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
818 |
+
device=device,
|
819 |
+
clip_skip=self.clip_skip,
|
820 |
+
num_images_per_prompt=num_images_per_prompt,
|
821 |
+
)
|
822 |
+
|
823 |
+
if self.do_classifier_free_guidance:
|
824 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
825 |
+
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
|
826 |
+
|
827 |
+
# Similiarly
|
828 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], dim=0)
|
829 |
+
|
830 |
+
# if self.do_classifier_free_guidance:
|
831 |
+
# prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
832 |
+
# pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
833 |
+
|
834 |
+
# 3. Preprocess image
|
835 |
+
image = self.image_processor.preprocess(image)
|
836 |
+
|
837 |
+
# 4. Prepare timesteps
|
838 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
839 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
840 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_inference_steps)
|
841 |
+
|
842 |
+
# timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
843 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
844 |
+
self._num_timesteps = len(timesteps)
|
845 |
+
|
846 |
+
# 5. Prepare Image latent
|
847 |
+
|
848 |
+
image_latents = self.prepare_image_latents(
|
849 |
+
image,
|
850 |
+
batch_size,
|
851 |
+
num_images_per_prompt,
|
852 |
+
prompt_embeds.dtype,
|
853 |
+
device,
|
854 |
+
self.do_classifier_free_guidance,
|
855 |
+
)
|
856 |
+
|
857 |
+
height, width = image_latents.shape[-2:]
|
858 |
+
height = height * self.vae_scale_factor
|
859 |
+
width = width * self.vae_scale_factor
|
860 |
+
# 6. Prepare latent variables
|
861 |
+
num_channels_latents = self.vae.config.latent_channels
|
862 |
+
if latents is None:
|
863 |
+
latents = self.prepare_latents(
|
864 |
+
image,
|
865 |
+
latent_timestep,
|
866 |
+
batch_size,
|
867 |
+
num_images_per_prompt,
|
868 |
+
prompt_embeds.dtype,
|
869 |
+
device,
|
870 |
+
generator,
|
871 |
+
)
|
872 |
+
else:
|
873 |
+
return latents.to(device=device, dtype=prompt_embeds.dtype)
|
874 |
+
|
875 |
+
# 7. Check that shapes of latents and image match the DIT in_channels
|
876 |
+
num_channels_image = image_latents.shape[1]
|
877 |
+
if mask_img is not None:
|
878 |
+
mask_img = self.image_processor.preprocess(mask_img)
|
879 |
+
mask_image_latents = self.prepare_image_latents(
|
880 |
+
mask_img,
|
881 |
+
batch_size,
|
882 |
+
num_images_per_prompt,
|
883 |
+
prompt_embeds.dtype,
|
884 |
+
device,
|
885 |
+
self.do_classifier_free_guidance,
|
886 |
+
)
|
887 |
+
num_channels_image += mask_image_latents.shape[1]
|
888 |
+
|
889 |
+
if num_channels_latents + num_channels_image != self.transformer.config.in_channels:
|
890 |
+
raise ValueError(
|
891 |
+
f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
|
892 |
+
f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
893 |
+
f" `num_channels_image`: {num_channels_image} "
|
894 |
+
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
|
895 |
+
" `pipeline.transformer` or your `image` input."
|
896 |
+
)
|
897 |
+
|
898 |
+
# 8. Denoising loop
|
899 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
900 |
+
for i, t in enumerate(timesteps):
|
901 |
+
if self.interrupt:
|
902 |
+
continue
|
903 |
+
|
904 |
+
# expand the latents if we are doing classifier free guidance
|
905 |
+
latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents
|
906 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
907 |
+
timestep = t.expand(latent_model_input.shape[0])
|
908 |
+
|
909 |
+
scaled_latent_model_input = torch.cat([latent_model_input, image_latents], dim=1)
|
910 |
+
if mask_img is not None:
|
911 |
+
scaled_latent_model_input = torch.cat([scaled_latent_model_input, mask_image_latents], dim=1)
|
912 |
+
# if "mask_index" in kwargs and kwargs['mask_index'] is not None:
|
913 |
+
# mask_index = kwargs['mask_index']
|
914 |
+
# else:
|
915 |
+
# mask_index = None
|
916 |
+
noise_pred = self.transformer(
|
917 |
+
hidden_states=scaled_latent_model_input,
|
918 |
+
timestep=timestep,
|
919 |
+
encoder_hidden_states=prompt_embeds,
|
920 |
+
pooled_projections=pooled_prompt_embeds,
|
921 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
922 |
+
return_dict=False,
|
923 |
+
# mask_index= mask_index,
|
924 |
+
)[0]
|
925 |
+
|
926 |
+
# perform guidance
|
927 |
+
if self.do_classifier_free_guidance:
|
928 |
+
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
|
929 |
+
noise_pred = (
|
930 |
+
noise_pred_uncond
|
931 |
+
+ self.guidance_scale * (noise_pred_text - noise_pred_image)
|
932 |
+
+ self.image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
933 |
+
)
|
934 |
+
# noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) # neg, prompt
|
935 |
+
# noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
936 |
+
|
937 |
+
# compute the previous noisy sample x_t -> x_t-1
|
938 |
+
latents_dtype = latents.dtype
|
939 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
940 |
+
|
941 |
+
if latents.dtype != latents_dtype:
|
942 |
+
if torch.backends.mps.is_available():
|
943 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
944 |
+
latents = latents.to(latents_dtype)
|
945 |
+
|
946 |
+
if callback_on_step_end is not None:
|
947 |
+
callback_kwargs = {}
|
948 |
+
for k in callback_on_step_end_tensor_inputs:
|
949 |
+
callback_kwargs[k] = locals()[k]
|
950 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
951 |
+
|
952 |
+
latents = callback_outputs.pop("latents", latents)
|
953 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
954 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
955 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
956 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
957 |
+
)
|
958 |
+
image_latents = callback_outputs.pop("image_latents", image_latents)
|
959 |
+
if mask_img is not None:
|
960 |
+
mask_image_latents = callback_outputs.pop("mask_image_latents", mask_image_latents)
|
961 |
+
# call the callback, if provided
|
962 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
963 |
+
progress_bar.update()
|
964 |
+
|
965 |
+
if XLA_AVAILABLE:
|
966 |
+
xm.mark_step()
|
967 |
+
|
968 |
+
if output_type == "latent":
|
969 |
+
image = latents
|
970 |
+
|
971 |
+
else:
|
972 |
+
# latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
973 |
+
latents = latents / self.vae.config.scaling_factor
|
974 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
975 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
976 |
+
|
977 |
+
# Offload all models
|
978 |
+
self.maybe_free_model_hooks()
|
979 |
+
|
980 |
+
if not return_dict:
|
981 |
+
return (image,)
|
982 |
+
|
983 |
+
return StableDiffusion3PipelineOutput(images=image)
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "FlowMatchEulerDiscreteScheduler",
|
3 |
+
"_diffusers_version": "0.30.1",
|
4 |
+
"num_train_timesteps": 1000,
|
5 |
+
"shift": 3.0
|
6 |
+
}
|
scheduler/scheduling_flow_match_euler_discrete.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.utils import BaseOutput, logging
|
23 |
+
from diffusers.utils.torch_utils import randn_tensor
|
24 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
Output class for the scheduler's `step` function output.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
38 |
+
denoising loop.
|
39 |
+
"""
|
40 |
+
|
41 |
+
prev_sample: torch.FloatTensor
|
42 |
+
|
43 |
+
|
44 |
+
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
45 |
+
"""
|
46 |
+
Euler scheduler.
|
47 |
+
|
48 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
49 |
+
methods the library implements for all schedulers such as loading and saving.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
num_train_timesteps (`int`, defaults to 1000):
|
53 |
+
The number of diffusion steps to train the model.
|
54 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
55 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
56 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
57 |
+
shift (`float`, defaults to 1.0):
|
58 |
+
The shift value for the timestep schedule.
|
59 |
+
"""
|
60 |
+
|
61 |
+
_compatibles = []
|
62 |
+
order = 1
|
63 |
+
|
64 |
+
@register_to_config
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
num_train_timesteps: int = 1000,
|
68 |
+
shift: float = 1.0,
|
69 |
+
):
|
70 |
+
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
71 |
+
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
72 |
+
|
73 |
+
sigmas = timesteps / num_train_timesteps
|
74 |
+
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
75 |
+
|
76 |
+
self.timesteps = sigmas * num_train_timesteps
|
77 |
+
|
78 |
+
self._step_index = None
|
79 |
+
self._begin_index = None
|
80 |
+
|
81 |
+
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
82 |
+
self.sigma_min = self.sigmas[-1].item()
|
83 |
+
self.sigma_max = self.sigmas[0].item()
|
84 |
+
|
85 |
+
@property
|
86 |
+
def step_index(self):
|
87 |
+
"""
|
88 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
89 |
+
"""
|
90 |
+
return self._step_index
|
91 |
+
|
92 |
+
@property
|
93 |
+
def begin_index(self):
|
94 |
+
"""
|
95 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
96 |
+
"""
|
97 |
+
return self._begin_index
|
98 |
+
|
99 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
100 |
+
def set_begin_index(self, begin_index: int = 0):
|
101 |
+
"""
|
102 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
begin_index (`int`):
|
106 |
+
The begin index for the scheduler.
|
107 |
+
"""
|
108 |
+
self._begin_index = begin_index
|
109 |
+
|
110 |
+
def scale_noise(
|
111 |
+
self,
|
112 |
+
sample: torch.FloatTensor,
|
113 |
+
timestep: Union[float, torch.FloatTensor],
|
114 |
+
noise: Optional[torch.FloatTensor] = None,
|
115 |
+
) -> torch.FloatTensor:
|
116 |
+
"""
|
117 |
+
Forward process in flow-matching
|
118 |
+
|
119 |
+
Args:
|
120 |
+
sample (`torch.FloatTensor`):
|
121 |
+
The input sample.
|
122 |
+
timestep (`int`, *optional*):
|
123 |
+
The current timestep in the diffusion chain.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
`torch.FloatTensor`:
|
127 |
+
A scaled input sample.
|
128 |
+
"""
|
129 |
+
if self.step_index is None:
|
130 |
+
self._init_step_index(timestep)
|
131 |
+
|
132 |
+
sigma = self.sigmas[self.step_index]
|
133 |
+
sample = sigma * noise + (1.0 - sigma) * sample
|
134 |
+
|
135 |
+
return sample
|
136 |
+
|
137 |
+
def _sigma_to_t(self, sigma):
|
138 |
+
return sigma * self.config.num_train_timesteps
|
139 |
+
|
140 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
141 |
+
"""
|
142 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
143 |
+
|
144 |
+
Args:
|
145 |
+
num_inference_steps (`int`):
|
146 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
147 |
+
device (`str` or `torch.device`, *optional*):
|
148 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
149 |
+
"""
|
150 |
+
self.num_inference_steps = num_inference_steps
|
151 |
+
|
152 |
+
timesteps = np.linspace(
|
153 |
+
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
154 |
+
)
|
155 |
+
|
156 |
+
sigmas = timesteps / self.config.num_train_timesteps
|
157 |
+
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
158 |
+
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
159 |
+
|
160 |
+
timesteps = sigmas * self.config.num_train_timesteps
|
161 |
+
self.timesteps = timesteps.to(device=device)
|
162 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
163 |
+
|
164 |
+
self._step_index = None
|
165 |
+
self._begin_index = None
|
166 |
+
|
167 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
168 |
+
if schedule_timesteps is None:
|
169 |
+
schedule_timesteps = self.timesteps
|
170 |
+
|
171 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
172 |
+
|
173 |
+
# The sigma index that is taken for the **very** first `step`
|
174 |
+
# is always the second index (or the last index if there is only 1)
|
175 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
176 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
177 |
+
pos = 1 if len(indices) > 1 else 0
|
178 |
+
|
179 |
+
return indices[pos].item()
|
180 |
+
|
181 |
+
def _init_step_index(self, timestep):
|
182 |
+
if self.begin_index is None:
|
183 |
+
if isinstance(timestep, torch.Tensor):
|
184 |
+
timestep = timestep.to(self.timesteps.device)
|
185 |
+
self._step_index = self.index_for_timestep(timestep)
|
186 |
+
else:
|
187 |
+
self._step_index = self._begin_index
|
188 |
+
|
189 |
+
def step(
|
190 |
+
self,
|
191 |
+
model_output: torch.FloatTensor,
|
192 |
+
timestep: Union[float, torch.FloatTensor],
|
193 |
+
sample: torch.FloatTensor,
|
194 |
+
s_churn: float = 0.0,
|
195 |
+
s_tmin: float = 0.0,
|
196 |
+
s_tmax: float = float("inf"),
|
197 |
+
s_noise: float = 1.0,
|
198 |
+
generator: Optional[torch.Generator] = None,
|
199 |
+
return_dict: bool = True,
|
200 |
+
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
201 |
+
"""
|
202 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
203 |
+
process from the learned model outputs (most often the predicted noise).
|
204 |
+
|
205 |
+
Args:
|
206 |
+
model_output (`torch.FloatTensor`):
|
207 |
+
The direct output from learned diffusion model.
|
208 |
+
timestep (`float`):
|
209 |
+
The current discrete timestep in the diffusion chain.
|
210 |
+
sample (`torch.FloatTensor`):
|
211 |
+
A current instance of a sample created by the diffusion process.
|
212 |
+
s_churn (`float`):
|
213 |
+
s_tmin (`float`):
|
214 |
+
s_tmax (`float`):
|
215 |
+
s_noise (`float`, defaults to 1.0):
|
216 |
+
Scaling factor for noise added to the sample.
|
217 |
+
generator (`torch.Generator`, *optional*):
|
218 |
+
A random number generator.
|
219 |
+
return_dict (`bool`):
|
220 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
221 |
+
tuple.
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
225 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
226 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
227 |
+
"""
|
228 |
+
|
229 |
+
if (
|
230 |
+
isinstance(timestep, int)
|
231 |
+
or isinstance(timestep, torch.IntTensor)
|
232 |
+
or isinstance(timestep, torch.LongTensor)
|
233 |
+
):
|
234 |
+
raise ValueError(
|
235 |
+
(
|
236 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
237 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
238 |
+
" one of the `scheduler.timesteps` as a timestep."
|
239 |
+
),
|
240 |
+
)
|
241 |
+
|
242 |
+
if self.step_index is None:
|
243 |
+
self._init_step_index(timestep)
|
244 |
+
|
245 |
+
# Upcast to avoid precision issues when computing prev_sample
|
246 |
+
sample = sample.to(torch.float32)
|
247 |
+
|
248 |
+
sigma = self.sigmas[self.step_index]
|
249 |
+
|
250 |
+
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
251 |
+
|
252 |
+
noise = randn_tensor(
|
253 |
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
254 |
+
)
|
255 |
+
|
256 |
+
eps = noise * s_noise
|
257 |
+
sigma_hat = sigma * (gamma + 1)
|
258 |
+
|
259 |
+
if gamma > 0:
|
260 |
+
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
261 |
+
|
262 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
263 |
+
# NOTE: "original_sample" should not be an expected prediction_type but is left in for
|
264 |
+
# backwards compatibility
|
265 |
+
|
266 |
+
# if self.config.prediction_type == "vector_field":
|
267 |
+
|
268 |
+
denoised = sample - model_output * sigma
|
269 |
+
# 2. Convert to an ODE derivative
|
270 |
+
derivative = (sample - denoised) / sigma_hat
|
271 |
+
|
272 |
+
dt = self.sigmas[self.step_index + 1] - sigma_hat
|
273 |
+
|
274 |
+
prev_sample = sample + derivative * dt
|
275 |
+
# Cast sample back to model compatible dtype
|
276 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
277 |
+
|
278 |
+
# upon completion increase step index by one
|
279 |
+
self._step_index += 1
|
280 |
+
|
281 |
+
if not return_dict:
|
282 |
+
return (prev_sample,)
|
283 |
+
|
284 |
+
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
|
285 |
+
|
286 |
+
def __len__(self):
|
287 |
+
return self.config.num_train_timesteps
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../UltraEdit/resolution_512_model_epoch_2_sd3_5e5/text_encoder",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.44.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71e183d11db0c6b6282a4d9e0abb74125edc8692393e89ed8ee5571005f35cb1
|
3 |
+
size 247323896
|
text_encoder_2/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../UltraEdit/resolution_512_model_epoch_2_sd3_5e5/text_encoder_2",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1280,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 5120,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 20,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 1280,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.44.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder_2/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec310df2af79c318e24d20511b601a591ca8cd4f1fce1d8dff822a356bcdb1f4
|
3 |
+
size 1389382176
|
text_encoder_3/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../UltraEdit/resolution_512_model_epoch_2_sd3_5e5/text_encoder_3",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_ff": 10240,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 4096,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"is_gated_act": true,
|
18 |
+
"layer_norm_epsilon": 1e-06,
|
19 |
+
"model_type": "t5",
|
20 |
+
"num_decoder_layers": 24,
|
21 |
+
"num_heads": 64,
|
22 |
+
"num_layers": 24,
|
23 |
+
"output_past": true,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"relative_attention_max_distance": 128,
|
26 |
+
"relative_attention_num_buckets": 32,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "float16",
|
29 |
+
"transformers_version": "4.44.2",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 32128
|
32 |
+
}
|
text_encoder_3/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2806b1cf07fc6eac6c5059811aea4e069d69df34b782a0a85cd6a2b57de48404
|
3 |
+
size 4994546896
|
text_encoder_3/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51aa7ace7b240403ef440b7387445aee7dd585cd0240d7773567cad5a0f1ed61
|
3 |
+
size 4966239920
|
text_encoder_3/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:366835891170b04927afee017584da714dfdb74aac0022d742943a46c612cae7
|
3 |
+
size 1577127552
|
text_encoder_3/model.safetensors.index.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 11537887232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
26 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"encoder.block.10.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"encoder.block.10.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"encoder.block.11.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"encoder.block.11.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"encoder.block.12.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"encoder.block.12.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"encoder.block.13.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"encoder.block.13.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"encoder.block.14.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"encoder.block.14.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"encoder.block.15.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"encoder.block.15.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"encoder.block.16.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"encoder.block.16.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"encoder.block.17.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"encoder.block.17.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"encoder.block.18.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"encoder.block.18.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"encoder.block.19.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"encoder.block.19.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
116 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"encoder.block.20.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
132 |
+
"encoder.block.20.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
133 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
134 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
135 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
136 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
137 |
+
"encoder.block.21.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
138 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
139 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
140 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
141 |
+
"encoder.block.21.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
142 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
143 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"encoder.block.22.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
149 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
150 |
+
"encoder.block.22.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
151 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
152 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"encoder.block.23.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"encoder.block.23.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
161 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
162 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
163 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
164 |
+
"encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
165 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
166 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
167 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
168 |
+
"encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
169 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
170 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
171 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
172 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
173 |
+
"encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
174 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
175 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
176 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
177 |
+
"encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
178 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
179 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
180 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
181 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
182 |
+
"encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
183 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
184 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
185 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
186 |
+
"encoder.block.5.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
187 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
188 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
189 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
190 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
191 |
+
"encoder.block.6.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
192 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
193 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
194 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
195 |
+
"encoder.block.6.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
196 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
197 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
198 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
199 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
200 |
+
"encoder.block.7.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
201 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
202 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
203 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
204 |
+
"encoder.block.7.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
205 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
206 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
207 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
208 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
209 |
+
"encoder.block.8.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
210 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
211 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
212 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
213 |
+
"encoder.block.8.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
214 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
215 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"encoder.block.9.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"encoder.block.9.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"encoder.final_layer_norm.weight": "model-00003-of-00003.safetensors",
|
224 |
+
"shared.weight": "model-00001-of-00003.safetensors"
|
225 |
+
}
|
226 |
+
}
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"tokenizer_class": "CLIPTokenizer",
|
29 |
+
"unk_token": "<|endoftext|>"
|
30 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_2/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_2/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "!",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer_2/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "!",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49406": {
|
13 |
+
"content": "<|startoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49407": {
|
21 |
+
"content": "<|endoftext|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"bos_token": "<|startoftext|>",
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"do_lower_case": true,
|
32 |
+
"eos_token": "<|endoftext|>",
|
33 |
+
"errors": "replace",
|
34 |
+
"model_max_length": 77,
|
35 |
+
"pad_token": "!",
|
36 |
+
"tokenizer_class": "CLIPTokenizer",
|
37 |
+
"unk_token": "<|endoftext|>"
|
38 |
+
}
|
tokenizer_2/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_3/special_tokens_map.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": {
|
105 |
+
"content": "</s>",
|
106 |
+
"lstrip": false,
|
107 |
+
"normalized": false,
|
108 |
+
"rstrip": false,
|
109 |
+
"single_word": false
|
110 |
+
},
|
111 |
+
"pad_token": {
|
112 |
+
"content": "<pad>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false
|
117 |
+
},
|
118 |
+
"unk_token": {
|
119 |
+
"content": "<unk>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false
|
124 |
+
}
|
125 |
+
}
|
tokenizer_3/spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer_3/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_3/tokenizer_config.json
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<unk>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"32000": {
|
29 |
+
"content": "<extra_id_99>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"32001": {
|
37 |
+
"content": "<extra_id_98>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"32002": {
|
45 |
+
"content": "<extra_id_97>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"32003": {
|
53 |
+
"content": "<extra_id_96>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"32004": {
|
61 |
+
"content": "<extra_id_95>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"32005": {
|
69 |
+
"content": "<extra_id_94>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"32006": {
|
77 |
+
"content": "<extra_id_93>",
|
78 |
+
"lstrip": true,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"32007": {
|
85 |
+
"content": "<extra_id_92>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"32008": {
|
93 |
+
"content": "<extra_id_91>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"32009": {
|
101 |
+
"content": "<extra_id_90>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"32010": {
|
109 |
+
"content": "<extra_id_89>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"32011": {
|
117 |
+
"content": "<extra_id_88>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"32012": {
|
125 |
+
"content": "<extra_id_87>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"32013": {
|
133 |
+
"content": "<extra_id_86>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"32014": {
|
141 |
+
"content": "<extra_id_85>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"32015": {
|
149 |
+
"content": "<extra_id_84>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"32016": {
|
157 |
+
"content": "<extra_id_83>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"32017": {
|
165 |
+
"content": "<extra_id_82>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"32018": {
|
173 |
+
"content": "<extra_id_81>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"32019": {
|
181 |
+
"content": "<extra_id_80>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"32020": {
|
189 |
+
"content": "<extra_id_79>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"32021": {
|
197 |
+
"content": "<extra_id_78>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"32022": {
|
205 |
+
"content": "<extra_id_77>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"32023": {
|
213 |
+
"content": "<extra_id_76>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"32024": {
|
221 |
+
"content": "<extra_id_75>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"32025": {
|
229 |
+
"content": "<extra_id_74>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"32026": {
|
237 |
+
"content": "<extra_id_73>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"32027": {
|
245 |
+
"content": "<extra_id_72>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"32028": {
|
253 |
+
"content": "<extra_id_71>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"32029": {
|
261 |
+
"content": "<extra_id_70>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"32030": {
|
269 |
+
"content": "<extra_id_69>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"32031": {
|
277 |
+
"content": "<extra_id_68>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"32032": {
|
285 |
+
"content": "<extra_id_67>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"32033": {
|
293 |
+
"content": "<extra_id_66>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"32034": {
|
301 |
+
"content": "<extra_id_65>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"32035": {
|
309 |
+
"content": "<extra_id_64>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"32036": {
|
317 |
+
"content": "<extra_id_63>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"32037": {
|
325 |
+
"content": "<extra_id_62>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"32038": {
|
333 |
+
"content": "<extra_id_61>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"32039": {
|
341 |
+
"content": "<extra_id_60>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"32040": {
|
349 |
+
"content": "<extra_id_59>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"32041": {
|
357 |
+
"content": "<extra_id_58>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"32042": {
|
365 |
+
"content": "<extra_id_57>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"32043": {
|
373 |
+
"content": "<extra_id_56>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"32044": {
|
381 |
+
"content": "<extra_id_55>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"32045": {
|
389 |
+
"content": "<extra_id_54>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"32046": {
|
397 |
+
"content": "<extra_id_53>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"32047": {
|
405 |
+
"content": "<extra_id_52>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"32048": {
|
413 |
+
"content": "<extra_id_51>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"32049": {
|
421 |
+
"content": "<extra_id_50>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"32050": {
|
429 |
+
"content": "<extra_id_49>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"32051": {
|
437 |
+
"content": "<extra_id_48>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"32052": {
|
445 |
+
"content": "<extra_id_47>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"32053": {
|
453 |
+
"content": "<extra_id_46>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"32054": {
|
461 |
+
"content": "<extra_id_45>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"32055": {
|
469 |
+
"content": "<extra_id_44>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"32056": {
|
477 |
+
"content": "<extra_id_43>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"32057": {
|
485 |
+
"content": "<extra_id_42>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"32058": {
|
493 |
+
"content": "<extra_id_41>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"32059": {
|
501 |
+
"content": "<extra_id_40>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"32060": {
|
509 |
+
"content": "<extra_id_39>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"32061": {
|
517 |
+
"content": "<extra_id_38>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"32062": {
|
525 |
+
"content": "<extra_id_37>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"32063": {
|
533 |
+
"content": "<extra_id_36>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"32064": {
|
541 |
+
"content": "<extra_id_35>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"32065": {
|
549 |
+
"content": "<extra_id_34>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"32066": {
|
557 |
+
"content": "<extra_id_33>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"32067": {
|
565 |
+
"content": "<extra_id_32>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"32068": {
|
573 |
+
"content": "<extra_id_31>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"32069": {
|
581 |
+
"content": "<extra_id_30>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"32070": {
|
589 |
+
"content": "<extra_id_29>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"32071": {
|
597 |
+
"content": "<extra_id_28>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"32072": {
|
605 |
+
"content": "<extra_id_27>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"32073": {
|
613 |
+
"content": "<extra_id_26>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"32074": {
|
621 |
+
"content": "<extra_id_25>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"32075": {
|
629 |
+
"content": "<extra_id_24>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"32076": {
|
637 |
+
"content": "<extra_id_23>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"32077": {
|
645 |
+
"content": "<extra_id_22>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"32078": {
|
653 |
+
"content": "<extra_id_21>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"32079": {
|
661 |
+
"content": "<extra_id_20>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"32080": {
|
669 |
+
"content": "<extra_id_19>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"32081": {
|
677 |
+
"content": "<extra_id_18>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"32082": {
|
685 |
+
"content": "<extra_id_17>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"32083": {
|
693 |
+
"content": "<extra_id_16>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"32084": {
|
701 |
+
"content": "<extra_id_15>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"32085": {
|
709 |
+
"content": "<extra_id_14>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"32086": {
|
717 |
+
"content": "<extra_id_13>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"32087": {
|
725 |
+
"content": "<extra_id_12>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"32088": {
|
733 |
+
"content": "<extra_id_11>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"32089": {
|
741 |
+
"content": "<extra_id_10>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"32090": {
|
749 |
+
"content": "<extra_id_9>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"32091": {
|
757 |
+
"content": "<extra_id_8>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"32092": {
|
765 |
+
"content": "<extra_id_7>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
},
|
772 |
+
"32093": {
|
773 |
+
"content": "<extra_id_6>",
|
774 |
+
"lstrip": true,
|
775 |
+
"normalized": false,
|
776 |
+
"rstrip": true,
|
777 |
+
"single_word": false,
|
778 |
+
"special": true
|
779 |
+
},
|
780 |
+
"32094": {
|
781 |
+
"content": "<extra_id_5>",
|
782 |
+
"lstrip": true,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": true,
|
785 |
+
"single_word": false,
|
786 |
+
"special": true
|
787 |
+
},
|
788 |
+
"32095": {
|
789 |
+
"content": "<extra_id_4>",
|
790 |
+
"lstrip": true,
|
791 |
+
"normalized": false,
|
792 |
+
"rstrip": true,
|
793 |
+
"single_word": false,
|
794 |
+
"special": true
|
795 |
+
},
|
796 |
+
"32096": {
|
797 |
+
"content": "<extra_id_3>",
|
798 |
+
"lstrip": true,
|
799 |
+
"normalized": false,
|
800 |
+
"rstrip": true,
|
801 |
+
"single_word": false,
|
802 |
+
"special": true
|
803 |
+
},
|
804 |
+
"32097": {
|
805 |
+
"content": "<extra_id_2>",
|
806 |
+
"lstrip": true,
|
807 |
+
"normalized": false,
|
808 |
+
"rstrip": true,
|
809 |
+
"single_word": false,
|
810 |
+
"special": true
|
811 |
+
},
|
812 |
+
"32098": {
|
813 |
+
"content": "<extra_id_1>",
|
814 |
+
"lstrip": true,
|
815 |
+
"normalized": false,
|
816 |
+
"rstrip": true,
|
817 |
+
"single_word": false,
|
818 |
+
"special": true
|
819 |
+
},
|
820 |
+
"32099": {
|
821 |
+
"content": "<extra_id_0>",
|
822 |
+
"lstrip": true,
|
823 |
+
"normalized": false,
|
824 |
+
"rstrip": true,
|
825 |
+
"single_word": false,
|
826 |
+
"special": true
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"additional_special_tokens": [
|
830 |
+
"<extra_id_0>",
|
831 |
+
"<extra_id_1>",
|
832 |
+
"<extra_id_2>",
|
833 |
+
"<extra_id_3>",
|
834 |
+
"<extra_id_4>",
|
835 |
+
"<extra_id_5>",
|
836 |
+
"<extra_id_6>",
|
837 |
+
"<extra_id_7>",
|
838 |
+
"<extra_id_8>",
|
839 |
+
"<extra_id_9>",
|
840 |
+
"<extra_id_10>",
|
841 |
+
"<extra_id_11>",
|
842 |
+
"<extra_id_12>",
|
843 |
+
"<extra_id_13>",
|
844 |
+
"<extra_id_14>",
|
845 |
+
"<extra_id_15>",
|
846 |
+
"<extra_id_16>",
|
847 |
+
"<extra_id_17>",
|
848 |
+
"<extra_id_18>",
|
849 |
+
"<extra_id_19>",
|
850 |
+
"<extra_id_20>",
|
851 |
+
"<extra_id_21>",
|
852 |
+
"<extra_id_22>",
|
853 |
+
"<extra_id_23>",
|
854 |
+
"<extra_id_24>",
|
855 |
+
"<extra_id_25>",
|
856 |
+
"<extra_id_26>",
|
857 |
+
"<extra_id_27>",
|
858 |
+
"<extra_id_28>",
|
859 |
+
"<extra_id_29>",
|
860 |
+
"<extra_id_30>",
|
861 |
+
"<extra_id_31>",
|
862 |
+
"<extra_id_32>",
|
863 |
+
"<extra_id_33>",
|
864 |
+
"<extra_id_34>",
|
865 |
+
"<extra_id_35>",
|
866 |
+
"<extra_id_36>",
|
867 |
+
"<extra_id_37>",
|
868 |
+
"<extra_id_38>",
|
869 |
+
"<extra_id_39>",
|
870 |
+
"<extra_id_40>",
|
871 |
+
"<extra_id_41>",
|
872 |
+
"<extra_id_42>",
|
873 |
+
"<extra_id_43>",
|
874 |
+
"<extra_id_44>",
|
875 |
+
"<extra_id_45>",
|
876 |
+
"<extra_id_46>",
|
877 |
+
"<extra_id_47>",
|
878 |
+
"<extra_id_48>",
|
879 |
+
"<extra_id_49>",
|
880 |
+
"<extra_id_50>",
|
881 |
+
"<extra_id_51>",
|
882 |
+
"<extra_id_52>",
|
883 |
+
"<extra_id_53>",
|
884 |
+
"<extra_id_54>",
|
885 |
+
"<extra_id_55>",
|
886 |
+
"<extra_id_56>",
|
887 |
+
"<extra_id_57>",
|
888 |
+
"<extra_id_58>",
|
889 |
+
"<extra_id_59>",
|
890 |
+
"<extra_id_60>",
|
891 |
+
"<extra_id_61>",
|
892 |
+
"<extra_id_62>",
|
893 |
+
"<extra_id_63>",
|
894 |
+
"<extra_id_64>",
|
895 |
+
"<extra_id_65>",
|
896 |
+
"<extra_id_66>",
|
897 |
+
"<extra_id_67>",
|
898 |
+
"<extra_id_68>",
|
899 |
+
"<extra_id_69>",
|
900 |
+
"<extra_id_70>",
|
901 |
+
"<extra_id_71>",
|
902 |
+
"<extra_id_72>",
|
903 |
+
"<extra_id_73>",
|
904 |
+
"<extra_id_74>",
|
905 |
+
"<extra_id_75>",
|
906 |
+
"<extra_id_76>",
|
907 |
+
"<extra_id_77>",
|
908 |
+
"<extra_id_78>",
|
909 |
+
"<extra_id_79>",
|
910 |
+
"<extra_id_80>",
|
911 |
+
"<extra_id_81>",
|
912 |
+
"<extra_id_82>",
|
913 |
+
"<extra_id_83>",
|
914 |
+
"<extra_id_84>",
|
915 |
+
"<extra_id_85>",
|
916 |
+
"<extra_id_86>",
|
917 |
+
"<extra_id_87>",
|
918 |
+
"<extra_id_88>",
|
919 |
+
"<extra_id_89>",
|
920 |
+
"<extra_id_90>",
|
921 |
+
"<extra_id_91>",
|
922 |
+
"<extra_id_92>",
|
923 |
+
"<extra_id_93>",
|
924 |
+
"<extra_id_94>",
|
925 |
+
"<extra_id_95>",
|
926 |
+
"<extra_id_96>",
|
927 |
+
"<extra_id_97>",
|
928 |
+
"<extra_id_98>",
|
929 |
+
"<extra_id_99>"
|
930 |
+
],
|
931 |
+
"clean_up_tokenization_spaces": true,
|
932 |
+
"eos_token": "</s>",
|
933 |
+
"extra_ids": 100,
|
934 |
+
"legacy": true,
|
935 |
+
"model_max_length": 512,
|
936 |
+
"pad_token": "<pad>",
|
937 |
+
"sp_model_kwargs": {},
|
938 |
+
"tokenizer_class": "T5Tokenizer",
|
939 |
+
"unk_token": "<unk>"
|
940 |
+
}
|
transformer/config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "SD3Transformer2DModel",
|
3 |
+
"_diffusers_version": "0.30.1",
|
4 |
+
"_name_or_path": "../UltraEdit/resolution_512_model_epoch_2_sd3_5e5/transformer",
|
5 |
+
"attention_head_dim": 64,
|
6 |
+
"caption_projection_dim": 1536,
|
7 |
+
"in_channels": 48,
|
8 |
+
"joint_attention_dim": 4096,
|
9 |
+
"num_attention_heads": 24,
|
10 |
+
"num_layers": 24,
|
11 |
+
"out_channels": 16,
|
12 |
+
"patch_size": 2,
|
13 |
+
"pooled_projection_dim": 2048,
|
14 |
+
"pos_embed_max_size": 192,
|
15 |
+
"sample_size": 128
|
16 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:413977f9252276649ec148678dd52348e60cc88e12a651f159c98d2a73a58e90
|
3 |
+
size 4170374624
|
vae/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.30.1",
|
4 |
+
"_name_or_path": "../UltraEdit/resolution_512_model_epoch_2_sd3_5e5/vae",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"force_upcast": true,
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 16,
|
21 |
+
"latents_mean": null,
|
22 |
+
"latents_std": null,
|
23 |
+
"layers_per_block": 2,
|
24 |
+
"mid_block_add_attention": true,
|
25 |
+
"norm_num_groups": 32,
|
26 |
+
"out_channels": 3,
|
27 |
+
"sample_size": 1024,
|
28 |
+
"scaling_factor": 1.5305,
|
29 |
+
"shift_factor": 0.0609,
|
30 |
+
"up_block_types": [
|
31 |
+
"UpDecoderBlock2D",
|
32 |
+
"UpDecoderBlock2D",
|
33 |
+
"UpDecoderBlock2D",
|
34 |
+
"UpDecoderBlock2D"
|
35 |
+
],
|
36 |
+
"use_post_quant_conv": false,
|
37 |
+
"use_quant_conv": false
|
38 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9b67a279283625caee39d61eacb5324243848477b4eb535355eaaa8423d4e09
|
3 |
+
size 167666654
|