File size: 1,661 Bytes
31cb2d0
 
 
 
 
 
 
2cdaab8
 
a1ae99a
31cb2d0
 
2cdaab8
 
 
a1ae99a
2cdaab8
 
 
 
a1ae99a
2cdaab8
a1ae99a
31cb2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language: es
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- sqac
metrics:
- f1
base_model: BSC-TeMU/roberta-base-bne
model-index:
- name: roberta-base-bne-finetuned-sqac
  results:
  - task:
      type: Question-Answering
      name: Question Answering
    dataset:
      name: sqac
      type: sqac
    metrics:
    - type: f1
      value: 0.7903
      name: f1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-bne-finetuned-sqac

This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the sqac dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2111

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9971        | 1.0   | 1196 | 0.8646          |
| 0.482         | 2.0   | 2392 | 0.9334          |
| 0.1652        | 3.0   | 3588 | 1.2111          |


### Framework versions

- Transformers 4.11.2
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3