Rename gradio_sindi.py to gradio_bert.py
Browse files- gradio_sindi.py → gradio_bert.py +52 -11
gradio_sindi.py → gradio_bert.py
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
-
"""
|
3 |
|
4 |
Automatically generated by Colab.
|
5 |
|
@@ -9,11 +9,6 @@ Original file is located at
|
|
9 |
# libraries
|
10 |
"""
|
11 |
|
12 |
-
!pip install gradio>=4.13.0
|
13 |
-
|
14 |
-
!pip install accelerate
|
15 |
-
|
16 |
-
!pip install transformers>=4.34
|
17 |
|
18 |
import gradio as gr
|
19 |
import torch
|
@@ -31,7 +26,22 @@ splitted_df = pd.read_csv('/content/splitted_df_jo.csv')
|
|
31 |
|
32 |
"""# getting context"""
|
33 |
|
34 |
-
def remove_symbols(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
remove_list = ['/', '(', ')', '\n', '.']
|
36 |
remove_chars = "".join(remove_list)
|
37 |
cleaned_text = "".join([char for char in text if char not in remove_chars])
|
@@ -42,7 +52,23 @@ def remove_symbols(text):
|
|
42 |
|
43 |
return filtered_text
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Create a TF-IDF vectorizer
|
47 |
vectorizer = TfidfVectorizer()
|
48 |
|
@@ -69,11 +95,26 @@ def context_func(message):
|
|
69 |
tokenizer = AutoTokenizer.from_pretrained("nlp-group/sindi-bert-final")
|
70 |
model = AutoModelForQuestionAnswering.from_pretrained("nlp-group/sindi-bert-final")
|
71 |
|
72 |
-
def answer_question(question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
context = context_func(question)
|
74 |
# Tokenize the inputs
|
75 |
inputs = tokenizer(question, context, return_tensors="pt", max_length=512, truncation=True)
|
76 |
-
|
77 |
# Get the answer from the model
|
78 |
outputs = model(**inputs)
|
79 |
answer_start_scores = outputs.start_logits
|
@@ -81,7 +122,7 @@ def answer_question(question):
|
|
81 |
answer_start = torch.argmax(answer_start_scores)
|
82 |
answer_end = torch.argmax(answer_end_scores) + 1
|
83 |
answer = tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
84 |
-
|
85 |
return answer, context
|
86 |
|
87 |
iface = gr.Interface(fn=answer_question,
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
+
"""gradio_bert.ipynb
|
3 |
|
4 |
Automatically generated by Colab.
|
5 |
|
|
|
9 |
# libraries
|
10 |
"""
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
import gradio as gr
|
14 |
import torch
|
|
|
26 |
|
27 |
"""# getting context"""
|
28 |
|
29 |
+
def remove_symbols(text: str)-> str:
|
30 |
+
"""
|
31 |
+
Removes specified symbols and non-ASCII characters from the input text.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
text (str): The input text to be cleaned.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
str: The cleaned text with specified symbols and non-ASCII characters removed.
|
38 |
+
|
39 |
+
Example:
|
40 |
+
>>> text = "This is a test string / with (some) symbols.\nAnd some non-ASCII characters like é and ñ."
|
41 |
+
>>> clean_text = remove_symbols(text)
|
42 |
+
>>> print(clean_text)
|
43 |
+
This is a test string with some symbols.And some non-ASCII characters like and .
|
44 |
+
"""
|
45 |
remove_list = ['/', '(', ')', '\n', '.']
|
46 |
remove_chars = "".join(remove_list)
|
47 |
cleaned_text = "".join([char for char in text if char not in remove_chars])
|
|
|
52 |
|
53 |
return filtered_text
|
54 |
|
55 |
+
|
56 |
+
def context_func(message: str)-> str:
|
57 |
+
"""
|
58 |
+
Finds the most similar context from a collection of texts based on TF-IDF vectorization and cosine similarity.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
message (str): The input message or question.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
str: The most similar context to the input message from the collection of texts.
|
65 |
+
|
66 |
+
Example:
|
67 |
+
>>> message = "What are the symptoms of breast cancer?"
|
68 |
+
>>> similar_context = context_func(message)
|
69 |
+
>>> print(similar_context)
|
70 |
+
Breast cancer is the most common cancer among women worldwide...
|
71 |
+
"""
|
72 |
# Create a TF-IDF vectorizer
|
73 |
vectorizer = TfidfVectorizer()
|
74 |
|
|
|
95 |
tokenizer = AutoTokenizer.from_pretrained("nlp-group/sindi-bert-final")
|
96 |
model = AutoModelForQuestionAnswering.from_pretrained("nlp-group/sindi-bert-final")
|
97 |
|
98 |
+
def answer_question(question: str)-> str, str:
|
99 |
+
"""
|
100 |
+
Generates an answer to the input question based on the provided context.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
question (str): The input question.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
tuple: A tuple containing the generated answer and the context used for answering.
|
107 |
+
|
108 |
+
Example:
|
109 |
+
>>> question = "What is the capital of France?"
|
110 |
+
>>> answer, context = answer_question(question)
|
111 |
+
>>> print("Answer:", answer)
|
112 |
+
>>> print("Context:", context)
|
113 |
+
"""
|
114 |
context = context_func(question)
|
115 |
# Tokenize the inputs
|
116 |
inputs = tokenizer(question, context, return_tensors="pt", max_length=512, truncation=True)
|
117 |
+
|
118 |
# Get the answer from the model
|
119 |
outputs = model(**inputs)
|
120 |
answer_start_scores = outputs.start_logits
|
|
|
122 |
answer_start = torch.argmax(answer_start_scores)
|
123 |
answer_end = torch.argmax(answer_end_scores) + 1
|
124 |
answer = tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
125 |
+
|
126 |
return answer, context
|
127 |
|
128 |
iface = gr.Interface(fn=answer_question,
|