nlpaueb commited on
Commit
fc5adf5
·
1 Parent(s): b9f7bef

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -0
README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ pipeline_tag: fill-mask
4
+ license: cc-by-sa-4.0
5
+ thumbnail: https://i.ibb.co/p3kQ7Rw/Screenshot-2020-10-06-at-12-16-36-PM.png
6
+ tags:
7
+ - legal
8
+ widget:
9
+ - text: "The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of police."
10
+ ---
11
+
12
+ # LEGAL-BERT: The Muppets straight out of Law School
13
+
14
+ <img align="left" src="https://i.ibb.co/p3kQ7Rw/Screenshot-2020-10-06-at-12-16-36-PM.png" width="100"/>
15
+
16
+ LEGAL-BERT is a family of BERT models for the legal domain, intended to assist legal NLP research, computational law, and legal technology applications. <br>
17
+ This is the light-weight version of BERT-BASE (33% the size of BERT-BASE) pre-trained from scratch on legal data, which achieves comparable performance to larger models, while being much more efficient (approximately 4 times faster) with a smaller environmental footprint. <br>
18
+ To pre-train the different variations of LEGAL-BERT, we collected 12 GB of diverse English legal text from several fields (e.g., legislation, court cases, contracts) scraped from publicly available resources. <br>
19
+ Sub-domain variants (CONTRACTS-, EURLEX-, ECHR-) and/or general LEGAL-BERT perform better than using BERT out of the box for domain-specific tasks.
20
+ <br/><br/><br/><br/>
21
+
22
+ ---
23
+
24
+ I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras and I. Androutsopoulos. "LEGAL-BERT: The Muppets straight out of Law School". In Findings of Empirical Methods in Natural Language Processing (EMNLP 2020) (Short Papers), to be held online, 2020. (https://aclanthology.org/2020.findings-emnlp.261)
25
+
26
+ ---
27
+
28
+ ## Pre-training corpora
29
+
30
+ The pre-training corpora of LEGAL-BERT include:
31
+
32
+ * 116,062 documents of EU legislation, publicly available from EURLEX (http://eur-lex.europa.eu), the repository of EU Law running under the EU Publication Office.
33
+
34
+ * 61,826 documents of UK legislation, publicly available from the UK legislation portal (http://www.legislation.gov.uk).
35
+
36
+ * 19,867 cases from the European Court of Justice (ECJ), also available from EURLEX.
37
+
38
+ * 12,554 cases from HUDOC, the repository of the European Court of Human Rights (ECHR) (http://hudoc.echr.coe.int/eng).
39
+
40
+ * 164,141 cases from various courts across the USA, hosted in the Case Law Access Project portal (https://case.law).
41
+
42
+ * 76,366 US contracts from EDGAR, the database of US Securities and Exchange Commission (SECOM) (https://www.sec.gov/edgar.shtml).
43
+
44
+ ## Pre-training details
45
+
46
+ * We trained BERT using the official code provided in Google BERT's GitHub repository (https://github.com/google-research/bert).
47
+ * We released a model similar to the English BERT-BASE model (12-layer, 768-hidden, 12-heads, 110M parameters).
48
+ * We chose to follow the same training set-up: 1 million training steps with batches of 256 sequences of length 512 with an initial learning rate 1e-4.
49
+ * We were able to use a single Google Cloud TPU v3-8 provided for free from [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc), while also utilizing [GCP research credits](https://edu.google.com/programs/credits/research). Huge thanks to both Google programs for supporting us!
50
+
51
+ ## Models list
52
+
53
+ | Model name | Model Path | Training corpora |
54
+ | ------------------- | ------------------------------------ | ------------------- |
55
+ | CONTRACTS-BERT-BASE | `nlpaueb/bert-base-uncased-contracts` | US contracts |
56
+ | EURLEX-BERT-BASE | `nlpaueb/bert-base-uncased-eurlex` | EU legislation |
57
+ | ECHR-BERT-BASE | `nlpaueb/bert-base-uncased-echr` | ECHR cases |
58
+ | LEGAL-BERT-BASE * | `nlpaueb/legal-bert-base-uncased` | All |
59
+ | LEGAL-BERT-SMALL | `nlpaueb/legal-bert-small-uncased` | All |
60
+
61
+ \* LEGAL-BERT-BASE is the model referred to as LEGAL-BERT-SC in Chalkidis et al. (2020); a model trained from scratch in the legal corpora mentioned below using a newly created vocabulary by a sentence-piece tokenizer trained on the very same corpora.
62
+
63
+ \*\* As many of you expressed interest in the LEGAL-BERT-FP models (those relying on the original BERT-BASE checkpoint), they have been released in Archive.org (https://archive.org/details/legal_bert_fp), as these models are secondary and possibly only interesting for those who aim to dig deeper in the open questions of Chalkidis et al. (2020).
64
+
65
+ ## Load Pretrained Model
66
+
67
+ ```python
68
+ from transformers import AutoTokenizer, AutoModel
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
71
+ model = AutoModel.from_pretrained("nlpaueb/legal-bert-base-uncased")
72
+ ```
73
+
74
+ ## Use LEBAL-BERT variants as Language Models
75
+
76
+ | Corpus | Model | Masked token | Predictions |
77
+ | --------------------------------- | ---------------------------------- | ------------ | ------------ |
78
+ | | **BERT-BASE-UNCASED** |
79
+ | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('new', '0.09'), ('current', '0.04'), ('proposed', '0.03'), ('marketing', '0.03'), ('joint', '0.02')
80
+ | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.32'), ('rape', '0.22'), ('abuse', '0.14'), ('death', '0.04'), ('violence', '0.03')
81
+ | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('farm', '0.25'), ('livestock', '0.08'), ('draft', '0.06'), ('domestic', '0.05'), ('wild', '0.05')
82
+ | | **CONTRACTS-BERT-BASE** |
83
+ | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('letter', '0.38'), ('dealer', '0.04'), ('employment', '0.03'), ('award', '0.03'), ('contribution', '0.02')
84
+ | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('death', '0.39'), ('imprisonment', '0.07'), ('contempt', '0.05'), ('being', '0.03'), ('crime', '0.02')
85
+ | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | (('domestic', '0.18'), ('laboratory', '0.07'), ('household', '0.06'), ('personal', '0.06'), ('the', '0.04')
86
+ | | **EURLEX-BERT-BASE** |
87
+ | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('supply', '0.11'), ('cooperation', '0.08'), ('service', '0.07'), ('licence', '0.07'), ('distribution', '0.05')
88
+ | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.66'), ('death', '0.07'), ('imprisonment', '0.07'), ('murder', '0.04'), ('rape', '0.02')
89
+ | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('live', '0.43'), ('pet', '0.28'), ('certain', '0.05'), ('fur', '0.03'), ('the', '0.02')
90
+ | | **ECHR-BERT-BASE** |
91
+ | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('second', '0.24'), ('latter', '0.10'), ('draft', '0.05'), ('bilateral', '0.05'), ('arbitration', '0.04')
92
+ | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.99'), ('death', '0.01'), ('inhuman', '0.00'), ('beating', '0.00'), ('rape', '0.00')
93
+ | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('pet', '0.17'), ('all', '0.12'), ('slaughtered', '0.10'), ('domestic', '0.07'), ('individual', '0.05')
94
+ | | **LEGAL-BERT-BASE** |
95
+ | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('settlement', '0.26'), ('letter', '0.23'), ('dealer', '0.04'), ('master', '0.02'), ('supplemental', '0.02')
96
+ | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '1.00'), ('detention', '0.00'), ('arrest', '0.00'), ('rape', '0.00'), ('death', '0.00')
97
+ | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('live', '0.67'), ('beef', '0.17'), ('farm', '0.03'), ('pet', '0.02'), ('dairy', '0.01')
98
+ | | **LEGAL-BERT-SMALL** |
99
+ | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('license', '0.09'), ('transition', '0.08'), ('settlement', '0.04'), ('consent', '0.03'), ('letter', '0.03')
100
+ | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.59'), ('pain', '0.05'), ('ptsd', '0.05'), ('death', '0.02'), ('tuberculosis', '0.02')
101
+ | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('all', '0.08'), ('live', '0.07'), ('certain', '0.07'), ('the', '0.07'), ('farm', '0.05')
102
+
103
+
104
+
105
+ ## Evaluation on downstream tasks
106
+
107
+ Consider the experiments in the article "LEGAL-BERT: The Muppets straight out of Law School". Chalkidis et al., 2020, (https://aclanthology.org/2020.findings-emnlp.261)
108
+
109
+ ## Author - Publication
110
+
111
+ ```
112
+ @inproceedings{chalkidis-etal-2020-legal,
113
+ title = "{LEGAL}-{BERT}: The Muppets straight out of Law School",
114
+ author = "Chalkidis, Ilias and
115
+ Fergadiotis, Manos and
116
+ Malakasiotis, Prodromos and
117
+ Aletras, Nikolaos and
118
+ Androutsopoulos, Ion",
119
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
120
+ month = nov,
121
+ year = "2020",
122
+ address = "Online",
123
+ publisher = "Association for Computational Linguistics",
124
+ doi = "10.18653/v1/2020.findings-emnlp.261",
125
+ pages = "2898--2904"
126
+ }
127
+ ```
128
+
129
+ ## About Us
130
+
131
+ [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr) develops algorithms, models, and systems that allow computers to process and generate natural language texts.
132
+
133
+ The group's current research interests include:
134
+ * question answering systems for databases, ontologies, document collections, and the Web, especially biomedical question answering,
135
+ * natural language generation from databases and ontologies, especially Semantic Web ontologies,
136
+ text classification, including filtering spam and abusive content,
137
+ * information extraction and opinion mining, including legal text analytics and sentiment analysis,
138
+ * natural language processing tools for Greek, for example parsers and named-entity recognizers,
139
+ machine learning in natural language processing, especially deep learning.
140
+
141
+ The group is part of the Information Processing Laboratory of the Department of Informatics of the Athens University of Economics and Business.
142
+
143
+ [Ilias Chalkidis](https://iliaschalkidis.github.io) on behalf of [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr)
144
+
145
+ | Github: [@ilias.chalkidis](https://github.com/iliaschalkidis) | Twitter: [@KiddoThe2B](https://twitter.com/KiddoThe2B) |