File size: 3,856 Bytes
7038b0e
7c5480b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f1385
7c5480b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
license: mit
tags:
- qwen
- qwq
- fp8
- vllm
base_model: Qwen/QwQ-32B
library_name: transformers
---

# QwQ-32B-FP8-dynamic

## Model Overview
- **Model Architecture:** Qwen2ForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Release Date:** 3/6/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B).


### Model Optimizations

This model was obtained by quantizing the weights and activations of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.

Only the weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme.
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.


## Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

number_gpus = 1
model_name = "neuralmagic/QwQ-32B-FP8-dynamic"

tokenizer = AutoTokenizer.from_pretrained(model_name)
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 


```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os

# Load model
model_stub = "Qwen/QwQ-32B"
model_name = model_stub.split("/")[-1]

model = AutoModelForCausalLM.from_pretrained(
    model_stub,
    torch_dtype="auto",
)

tokenizer = AutoTokenizer.from_pretrained(model_stub)

# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
    targets="Linear",
    scheme="FP8_DYNAMIC",
    ignore=["lm_head"],
)

# Apply quantization
oneshot(
    model=model,
    recipe=recipe,
)

# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```


### Accuracy

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>Qwen/QwQ-32B</th>
      <th>neuralmagic/QwQ-32B-FP8-dynamic</th>
      <th>Recovery</th>
    </tr>
  </thead>
  <tbody>
    <tr>
<td rowspan="4"><b>Reasoning</b></td>
<td>AIME 2024 (pass@1)</td>
<td>78.66</td>
<td>79.40</td>
<td>100.94%</td>
</tr>
<tr>
<td>MATH-500 (pass@1)</td>
<td>97.39</td>
<td>97.44</td>
<td>100.05%</td>
</tr>
<tr>
<td>GPQA Diamond (pass@1)</td>
<td>64.72</td>
<td>63.21</td>
<td>97.66%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>80.25</b></td>
<td><b>80.05</b></td>
<td><b>99.75%</b></td>
</tr>
    
  </tbody>
</table>