--- license: mit tags: - qwen - qwq - fp8 - vllm base_model: Qwen/QwQ-32B library_name: transformers --- # QwQ-32B-FP8-dynamic ## Model Overview - **Model Architecture:** Qwen2ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 3/6/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B). ### Model Optimizations This model was obtained by quantizing the weights and activations of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization. ## Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams number_gpus = 1 model_name = "neuralmagic/QwQ-32B-FP8-dynamic" tokenizer = AutoTokenizer.from_pretrained(model_name) sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot import os # Load model model_stub = "Qwen/QwQ-32B" model_name = model_stub.split("/")[-1] model = AutoModelForCausalLM.from_pretrained( model_stub, torch_dtype="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_stub) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"], ) # Apply quantization oneshot( model=model, recipe=recipe, ) # Save to disk in compressed-tensors format save_path = model_name + "-FP8-dynamic model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ``` ### Accuracy
Category | Metric | Qwen/QwQ-32B | neuralmagic/QwQ-32B-FP8-dynamic | Recovery |
---|---|---|---|---|
Reasoning | AIME 2024 (pass@1) | 78.66 | 79.40 | 100.94% |
MATH-500 (pass@1) | 97.39 | 97.44 | 100.05% | |
GPQA Diamond (pass@1) | 64.72 | 63.21 | 97.66% | |
Average Score | 80.25 | 80.05 | 99.75% |