mgoin commited on
Commit
299dcaf
·
verified ·
1 Parent(s): 8f6d459

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -1,7 +1,7 @@
1
  https://github.com/vllm-project/llm-compressor/pull/185
2
 
3
  ```python
4
- from transformers import AutoTokenizer
5
 
6
  from llmcompressor.modifiers.quantization import QuantizationModifier
7
  from llmcompressor.transformers import oneshot
@@ -10,20 +10,20 @@ from llmcompressor.transformers.sparsification import create_sparse_auto_model_c
10
  MODEL_ID = "llava-hf/llava-1.5-7b-hf"
11
  model_class = create_sparse_auto_model_class("LlavaForConditionalGeneration")
12
  model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
13
- tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
14
 
15
  recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
16
  oneshot(model=model, recipe=recipe)
17
 
18
  # Confirm generations of the quantized model look sane.
19
  print("========== SAMPLE GENERATION ==============")
20
- input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
21
  output = model.generate(input_ids, max_new_tokens=20)
22
- print(tokenizer.decode(output[0]))
23
  print("==========================================")
24
 
25
  # Save to disk in compressed-tensors format.
26
  SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
27
  model.save_pretrained(SAVE_DIR)
28
- tokenizer.save_pretrained(SAVE_DIR)
29
  ```
 
1
  https://github.com/vllm-project/llm-compressor/pull/185
2
 
3
  ```python
4
+ from transformers import AutoProcessor
5
 
6
  from llmcompressor.modifiers.quantization import QuantizationModifier
7
  from llmcompressor.transformers import oneshot
 
10
  MODEL_ID = "llava-hf/llava-1.5-7b-hf"
11
  model_class = create_sparse_auto_model_class("LlavaForConditionalGeneration")
12
  model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
13
+ processor = AutoProcessor.from_pretrained(MODEL_ID)
14
 
15
  recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
16
  oneshot(model=model, recipe=recipe)
17
 
18
  # Confirm generations of the quantized model look sane.
19
  print("========== SAMPLE GENERATION ==============")
20
+ input_ids = processor("Hello my name is", return_tensors="pt").input_ids.to("cuda")
21
  output = model.generate(input_ids, max_new_tokens=20)
22
+ print(processor.decode(output[0]))
23
  print("==========================================")
24
 
25
  # Save to disk in compressed-tensors format.
26
  SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
27
  model.save_pretrained(SAVE_DIR)
28
+ processor.save_pretrained(SAVE_DIR)
29
  ```