Update README.md
Browse files
README.md
CHANGED
@@ -8,22 +8,30 @@ from llmcompressor.transformers import oneshot
|
|
8 |
from llmcompressor.transformers.sparsification import create_sparse_auto_model_class
|
9 |
|
10 |
MODEL_ID = "llava-hf/llava-1.5-7b-hf"
|
|
|
|
|
11 |
model_class = create_sparse_auto_model_class("LlavaForConditionalGeneration")
|
12 |
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
|
13 |
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Confirm generations of the quantized model look sane.
|
19 |
print("========== SAMPLE GENERATION ==============")
|
20 |
-
input_ids = processor("Hello my name is", return_tensors="pt").input_ids.to("cuda")
|
21 |
output = model.generate(input_ids, max_new_tokens=20)
|
22 |
print(processor.decode(output[0]))
|
23 |
print("==========================================")
|
24 |
-
|
25 |
-
# Save to disk in compressed-tensors format.
|
26 |
-
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
27 |
-
model.save_pretrained(SAVE_DIR)
|
28 |
-
processor.save_pretrained(SAVE_DIR)
|
29 |
```
|
|
|
8 |
from llmcompressor.transformers.sparsification import create_sparse_auto_model_class
|
9 |
|
10 |
MODEL_ID = "llava-hf/llava-1.5-7b-hf"
|
11 |
+
|
12 |
+
# Load model.
|
13 |
model_class = create_sparse_auto_model_class("LlavaForConditionalGeneration")
|
14 |
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
|
15 |
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
16 |
|
17 |
+
# Configure the quantization algorithm and scheme.
|
18 |
+
# In this case, we:
|
19 |
+
# * quantize the weights to fp8 with per channel via ptq
|
20 |
+
# * quantize the activations to fp8 with dynamic per token
|
21 |
+
recipe = QuantizationModifier(
|
22 |
+
targets="Linear",
|
23 |
+
scheme="FP8_DYNAMIC",
|
24 |
+
ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"],
|
25 |
+
)
|
26 |
+
|
27 |
+
# Apply quantization and save to disk in compressed-tensors format.
|
28 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
29 |
+
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR)
|
30 |
|
31 |
# Confirm generations of the quantized model look sane.
|
32 |
print("========== SAMPLE GENERATION ==============")
|
33 |
+
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
|
34 |
output = model.generate(input_ids, max_new_tokens=20)
|
35 |
print(processor.decode(output[0]))
|
36 |
print("==========================================")
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|