--- tags: - w4a16 - int4 - vllm - audio license: apache-2.0 license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: openai/whisper-large-v3 library_name: transformers --- # whisper-large-v3-quantized.w4a16 ## Model Overview - **Model Architecture:** whisper-large-v3 - **Input:** Audio-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** FP16 - **Release Date:** 1/31/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3). ### Model Optimizations This model was obtained by quantizing the weights of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) to INT4 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.audio import AudioAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/whisper-large-v3.w4a16", max_model_len=448, max_num_seqs=400, limit_mm_per_prompt={"audio": 1}, ) # prepare inputs inputs = { # Test explicit encoder/decoder prompt "encoder_prompt": { "prompt": "", "multi_modal_data": { "audio": AudioAsset("winning_call").audio_and_sample_rate, }, }, "decoder_prompt": "<|startoftranscript|>", } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. ```python import torch from datasets import load_dataset from transformers import WhisperProcessor from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration # Select model and load it. MODEL_ID = "openai/whisper-large-v3" model = TraceableWhisperForConditionalGeneration.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", ) model.config.forced_decoder_ids = None processor = WhisperProcessor.from_pretrained(MODEL_ID) # Configure processor the dataset task. processor.tokenizer.set_prefix_tokens(language="en", task="transcribe") # Select calibration dataset. DATASET_ID = "MLCommons/peoples_speech" DATASET_SUBSET = "test" DATASET_SPLIT = "test" # Select number of samples. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset( DATASET_ID, DATASET_SUBSET, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]", trust_remote_code=True, ) def preprocess(example): return { "array": example["audio"]["array"], "sampling_rate": example["audio"]["sampling_rate"], "text": " " + example["text"].capitalize(), } ds = ds.map(preprocess, remove_columns=ds.column_names) # Process inputs. def process(sample): inputs = processor( audio=sample["array"], sampling_rate=sample["sampling_rate"], text=sample["text"], add_special_tokens=True, return_tensors="pt", ) inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype) inputs["decoder_input_ids"] = inputs["labels"] del inputs["labels"] return inputs ds = ds.map(process, remove_columns=ds.column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} # Recipe recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]) # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, data_collator=data_collator, ) # Confirm generations of the quantized model look sane. print("\n\n") print("========== SAMPLE GENERATION ==============") sample_features = next(iter(ds))["input_features"] sample_decoder_ids = [processor.tokenizer.prefix_tokens] sample_input = { "input_features": torch.tensor(sample_features).to(model.device), "decoder_input_ids": torch.tensor(sample_decoder_ids).to(model.device), } output = model.generate(**sample_input, language="en") print(processor.batch_decode(output, skip_special_tokens=True)) print("==========================================\n\n") # that's where you have a lot of windows in the south no actually that's passive solar # and passive solar is something that was developed and designed in the 1960s and 70s # and it was a great thing for what it was at the time but it's not a passive house # Save to disk compressed. SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128" model.save_pretrained(SAVE_DIR, save_compressed=True) processor.save_pretrained(SAVE_DIR) ``` ## Evaluation Base Model ``` Total Test Time: 94.4606 seconds Total Requests: 511 Successful Requests: 511 Average Latency: 53.3529 seconds Median Latency: 52.7258 seconds 95th Percentile Latency: 86.5851 seconds Estimated req_Throughput: 5.41 requests/s Estimated Throughput: 100.79 tok/s WER: 12.660815197787665 ``` W4A16 ``` Total Test Time: 106.2064 seconds Total Requests: 511 Successful Requests: 511 Average Latency: 59.7467 seconds Median Latency: 58.3930 seconds 95th Percentile Latency: 97.4831 seconds Estimated req_Throughput: 4.81 requests/s Estimated Throughput: 89.35 tok/s WER: 12.949380786341228 ``` ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} }