# This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict import copy import json import os from os.path import exists, join, isdir from dataclasses import dataclass, field import sys from typing import Optional, Dict, Sequence import numpy as np from tqdm import tqdm import logging import bitsandbytes as bnb import pandas as pd import importlib from packaging import version from packaging.version import parse import torch import transformers from torch.nn.utils.rnn import pad_sequence import argparse from transformers import ( AutoTokenizer, AutoModelForCausalLM, set_seed, Seq2SeqTrainer, BitsAndBytesConfig, LlamaTokenizer ) from datasets import load_dataset, Dataset import evaluate from peft import ( prepare_model_for_kbit_training, LoraConfig, get_peft_model, PeftModel ) from peft.tuners.lora import LoraLayer from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR def is_ipex_available(): def get_major_and_minor_from_version(full_version): return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor) _torch_version = importlib.metadata.version("torch") if importlib.util.find_spec("intel_extension_for_pytorch") is None: return False _ipex_version = "N/A" try: _ipex_version = importlib.metadata.version("intel_extension_for_pytorch") except importlib.metadata.PackageNotFoundError: return False torch_major_and_minor = get_major_and_minor_from_version(_torch_version) ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version) if torch_major_and_minor != ipex_major_and_minor: warnings.warn( f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*," f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again." ) return False return True if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True logger = logging.getLogger(__name__) IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" @dataclass class ModelArguments: model_name_or_path: Optional[str] = field( default="EleutherAI/pythia-12b" ) trust_remote_code: Optional[bool] = field( default=False, metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."} ) use_auth_token: Optional[bool] = field( default=False, metadata={"help": "Enables using Huggingface auth token from Git Credentials."} ) @dataclass class DataArguments: eval_dataset_size: int = field( default=1024, metadata={"help": "Size of validation dataset."} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) source_max_len: int = field( default=1024, metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."}, ) target_max_len: int = field( default=256, metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."}, ) dataset: str = field( default='alpaca', metadata={"help": "Which dataset to finetune on. See datamodule for options."} ) dataset_format: Optional[str] = field( default=None, metadata={"help": "Which dataset format is used. [alpaca|chip2|self-instruct|hh-rlhf]"} ) @dataclass class TrainingArguments(transformers.Seq2SeqTrainingArguments): cache_dir: Optional[str] = field( default=None ) train_on_source: Optional[bool] = field( default=False, metadata={"help": "Whether to train on the input in addition to the target text."} ) mmlu_split: Optional[str] = field( default='eval', metadata={"help": "The MMLU split to run on"} ) mmlu_dataset: Optional[str] = field( default='mmlu-fs', metadata={"help": "MMLU dataset to use: options are `mmlu-zs` for zero-shot or `mmlu-fs` for few shot."} ) do_mmlu_eval: Optional[bool] = field( default=False, metadata={"help": "Whether to run the MMLU evaluation."} ) max_mmlu_samples: Optional[int] = field( default=None, metadata={"help": "If set, only evaluates on `max_mmlu_samples` of the MMMLU dataset."} ) mmlu_source_max_len: int = field( default=2048, metadata={"help": "Maximum source sequence length for mmlu."} ) full_finetune: bool = field( default=False, metadata={"help": "Finetune the entire model without adapters."} ) adam8bit: bool = field( default=False, metadata={"help": "Use 8-bit adam."} ) double_quant: bool = field( default=True, metadata={"help": "Compress the quantization statistics through double quantization."} ) quant_type: str = field( default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} ) bits: int = field( default=4, metadata={"help": "How many bits to use."} ) lora_r: int = field( default=64, metadata={"help": "Lora R dimension."} ) lora_alpha: float = field( default=16, metadata={"help": " Lora alpha."} ) lora_dropout: float = field( default=0.0, metadata={"help":"Lora dropout."} ) max_memory_MB: int = field( default=80000, metadata={"help": "Free memory per gpu."} ) report_to: str = field( default='none', metadata={"help": "To use wandb or something else for reporting."} ) output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'}) optim: str = field(default='paged_adamw_32bit', metadata={"help": 'The optimizer to be used'}) per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'}) gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'}) max_steps: int = field(default=10000, metadata={"help": 'How many optimizer update steps to take'}) weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'}) # use lora dropout instead for regularization if needed learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'}) remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'}) max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'}) gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'}) do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'}) lr_scheduler_type: str = field(default='constant', metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'}) warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'}) logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'}) group_by_length: bool = field(default=True, metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'}) save_strategy: str = field(default='steps', metadata={"help": 'When to save checkpoints'}) save_steps: int = field(default=250, metadata={"help": 'How often to save a model'}) save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'}) sharded_ddp: bool = field(default=False) ddp_timeout: int = field(default=7200) ddp_find_unused_parameters: bool = field(default=False) dataloader_num_workers: int = field(default=3) @dataclass class GenerationArguments: # For more hyperparameters check: # https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig # Length arguments max_new_tokens: Optional[int] = field( default=256, metadata={"help": "Maximum number of new tokens to be generated in evaluation or prediction loops" "if predict_with_generate is set."} ) min_new_tokens : Optional[int] = field( default=None, metadata={"help": "Minimum number of new tokens to generate."} ) # Generation strategy do_sample: Optional[bool] = field(default=False) num_beams: Optional[int] = field(default=1) num_beam_groups: Optional[int] = field(default=1) penalty_alpha: Optional[float] = field(default=None) use_cache: Optional[bool] = field(default=True) # Hyperparameters for logit manipulation temperature: Optional[float] = field(default=1.0) top_k: Optional[int] = field(default=50) top_p: Optional[float] = field(default=1.0) typical_p: Optional[float] = field(default=1.0) diversity_penalty: Optional[float] = field(default=0.0) repetition_penalty: Optional[float] = field(default=1.0) length_penalty: Optional[float] = field(default=1.0) no_repeat_ngram_size: Optional[int] = field(default=0) def find_all_linear_names(args, model): cls = bnb.nn.Linear4bit if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear) lora_module_names = set() for name, module in model.named_modules(): if isinstance(module, cls): names = name.split('.') lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if 'lm_head' in lora_module_names: # needed for 16-bit lora_module_names.remove('lm_head') return list(lora_module_names) class SavePeftModelCallback(transformers.TrainerCallback): def save_model(self, args, state, kwargs): print('Saving PEFT checkpoint...') if state.best_model_checkpoint is not None: checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model") else: checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) def on_save(self, args, state, control, **kwargs): self.save_model(args, state, kwargs) return control def on_train_end(self, args, state, control, **kwargs): def touch(fname, times=None): with open(fname, 'a'): os.utime(fname, times) touch(join(args.output_dir, 'completed')) self.save_model(args, state, kwargs) def get_accelerate_model(args, checkpoint_dir): if torch.cuda.is_available(): n_gpus = torch.cuda.device_count() if is_ipex_available() and torch.xpu.is_available(): n_gpus = torch.xpu.device_count() max_memory = f'{args.max_memory_MB}MB' max_memory = {i: max_memory for i in range(n_gpus)} device_map = "auto" # if we are in a distributed setting, we need to set the device map and max memory per device if os.environ.get('LOCAL_RANK') is not None: local_rank = int(os.environ.get('LOCAL_RANK', '0')) device_map = {'': local_rank} max_memory = {'': max_memory[local_rank]} if args.full_finetune: assert args.bits in [16, 32] print(f'loading base model {args.model_name_or_path}...') compute_dtype = (torch.float16 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)) model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, cache_dir=args.cache_dir, load_in_4bit=args.bits == 4, load_in_8bit=args.bits == 8, device_map=device_map, max_memory=max_memory, quantization_config=BitsAndBytesConfig( load_in_4bit=args.bits == 4, load_in_8bit=args.bits == 8, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=args.double_quant, bnb_4bit_quant_type=args.quant_type, ), torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)), trust_remote_code=args.trust_remote_code, use_auth_token=args.use_auth_token ) if compute_dtype == torch.float16 and args.bits == 4: if torch.cuda.is_bf16_supported(): print('='*80) print('Your GPU supports bfloat16, you can accelerate training with the argument --bf16') print('='*80) if compute_dtype == torch.float16 and (is_ipex_available() and torch.xpu.is_available()): compute_dtype = torch.bfloat16 print('Intel XPU does not support float16 yet, so switching to bfloat16') setattr(model, 'model_parallel', True) setattr(model, 'is_parallelizable', True) model.config.torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)) # Tokenizer tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, cache_dir=args.cache_dir, padding_side="right", use_fast=False, # Fast tokenizer giving issues. tokenizer_type='llama' if 'llama' in args.model_name_or_path else None, # Needed for HF name change legacy=False, trust_remote_code=args.trust_remote_code, use_auth_token=args.use_auth_token, ) #if tokenizer._pad_token is None: # smart_tokenizer_and_embedding_resize( # special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), # tokenizer=tokenizer, # model=model, # ) if 'llama' in args.model_name_or_path or isinstance(tokenizer, LlamaTokenizer): # LLaMA tokenizer may not have correct special tokens set. # Check and add them if missing to prevent them from being parsed into different tokens. # Note that these are present in the vocabulary. # Note also that `model.config.pad_token_id` is 0 which corresponds to `` token. print('Adding special tokens.') tokenizer.add_special_tokens({ "eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id), "bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id), "pad_token": tokenizer.convert_ids_to_tokens(0) # "unk_token": tokenizer.convert_ids_to_tokens( # model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id # ), }) if not args.full_finetune: model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.gradient_checkpointing) if not args.full_finetune: if checkpoint_dir is not None: print("Loading adapters from checkpoint.") model = PeftModel.from_pretrained(model, join(checkpoint_dir, 'adapter_model'), is_trainable=True) else: print(f'adding LoRA modules...') modules = find_all_linear_names(args, model) config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=modules, lora_dropout=args.lora_dropout, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) for name, module in model.named_modules(): if isinstance(module, LoraLayer): if args.bf16: module = module.to(torch.bfloat16) if 'norm' in name: module = module.to(torch.float32) if 'lm_head' in name or 'embed_tokens' in name: if hasattr(module, 'weight'): if args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) return model, tokenizer def print_trainable_parameters(args, model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() if args.bits == 4: trainable_params /= 2 print( f"trainable params: {trainable_params} || " f"all params: {all_param} || " f"trainable: {100 * trainable_params / all_param}" ) def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings_data = model.get_input_embeddings().weight.data output_embeddings_data = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings_data[-num_new_tokens:] = input_embeddings_avg output_embeddings_data[-num_new_tokens:] = output_embeddings_avg @dataclass class DataCollatorForCausalLM(object): tokenizer: transformers.PreTrainedTokenizer source_max_len: int target_max_len: int train_on_source: bool predict_with_generate: bool def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: # Extract elements sources = [f"{self.tokenizer.bos_token}{example['input']}" for example in instances] targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances] # Tokenize tokenized_sources_with_prompt = self.tokenizer( sources, max_length=self.source_max_len, truncation=True, add_special_tokens=False, ) tokenized_targets = self.tokenizer( targets, max_length=self.target_max_len, truncation=True, add_special_tokens=False, ) # Build the input and labels for causal LM input_ids = [] labels = [] for tokenized_source, tokenized_target in zip( tokenized_sources_with_prompt['input_ids'], tokenized_targets['input_ids'] ): if not self.predict_with_generate: input_ids.append(torch.tensor(tokenized_source + tokenized_target)) if not self.train_on_source: labels.append( torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target)) ) else: labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target))) else: input_ids.append(torch.tensor(tokenized_source)) # Apply padding input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None data_dict = { 'input_ids': input_ids, 'attention_mask':input_ids.ne(self.tokenizer.pad_token_id), } if labels is not None: data_dict['labels'] = labels return data_dict def extract_unnatural_instructions_data(examples, extract_reformulations=False): out = { 'input': [], 'output': [], } for example_instances in examples['instances']: for instance in example_instances: out['input'].append(instance['instruction_with_input']) out['output'].append(instance['output']) if extract_reformulations: for example_reformulations in examples['reformulations']: if example_reformulations is not None: for instance in example_reformulations: out['input'].append(instance['instruction_with_input']) out['output'].append(instance['output']) return out ALPACA_PROMPT_DICT = { "prompt_input": ( "Below is an instruction that describes a task, paired with an input that provides further context. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response: " ), "prompt_no_input": ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response: " ), } def extract_alpaca_dataset(example): if example.get("input", "") != "": prompt_format = ALPACA_PROMPT_DICT["prompt_input"] else: prompt_format = ALPACA_PROMPT_DICT["prompt_no_input"] return {'input': prompt_format.format(**example)} def local_dataset(dataset_name): if dataset_name.endswith('.json') or dataset_name.endswith('.jsonl'): full_dataset = Dataset.from_json(path_or_paths=dataset_name) elif dataset_name.endswith('.csv'): full_dataset = Dataset.from_pandas(pd.read_csv(dataset_name)) elif dataset_name.endswith('.tsv'): full_dataset = Dataset.from_pandas(pd.read_csv(dataset_name, delimiter='\t')) else: raise ValueError(f"Unsupported dataset format: {dataset_name}") split_dataset = full_dataset.train_test_split(test_size=0.1) return split_dataset def make_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict: """ Make dataset and collator for supervised fine-tuning. Datasets are expected to have the following columns: { `input`, `output` } Available datasets to be selected with `dataset` argument: - alpaca, 52002 examples - alpaca cleaned, 51942 examples - chip2 (OIG), 210289 examples - self-instruct, 82612 examples - hh-rlhf (Anthropic), 160800 examples - longform, 23.7k examples - oasst1 (OpenAssistant) primary message tree only, 9,846 examples Coming soon: - unnatural instructions core, 66010 examples - unnatural instructions full, 240670 examples - alpaca-gpt4, 52002 examples - unnatural-instructions-gpt4, 9000 examples - supernatural-instructions, 69624 examples (same as paper with 100 ex/task more can be used) - flan (FLAN v2), up to 20M examples available - vicuna """ def load_data(dataset_name): if dataset_name == 'alpaca': return load_dataset("tatsu-lab/alpaca") elif dataset_name == 'alpaca-clean': return load_dataset("yahma/alpaca-cleaned") elif dataset_name == 'chip2': return load_dataset("laion/OIG", data_files='unified_chip2.jsonl') elif dataset_name == 'self-instruct': return load_dataset("yizhongw/self_instruct", name='self_instruct') elif dataset_name == 'hh-rlhf': return load_dataset("Anthropic/hh-rlhf") elif dataset_name == 'longform': return load_dataset("akoksal/LongForm") elif dataset_name == 'oasst1': return load_dataset("timdettmers/openassistant-guanaco") elif dataset_name == 'vicuna': raise NotImplementedError("Vicuna data was not released.") else: if os.path.exists(dataset_name): try: args.dataset_format = args.dataset_format if args.dataset_format else "input-output" full_dataset = local_dataset(dataset_name) return full_dataset except: raise ValueError(f"Error loading dataset from {dataset_name}") else: raise NotImplementedError(f"Dataset {dataset_name} not implemented yet.") def format_dataset(dataset, dataset_format): if ( dataset_format == 'alpaca' or dataset_format == 'alpaca-clean' or (dataset_format is None and args.dataset in ['alpaca', 'alpaca-clean']) ): dataset = dataset.map(extract_alpaca_dataset, remove_columns=['instruction']) elif dataset_format == 'chip2' or (dataset_format is None and args.dataset == 'chip2'): dataset = dataset.map(lambda x: { 'input': x['text'].split('\n: ')[0].replace(': ', ''), 'output': x['text'].split('\n: ')[1], }) elif dataset_format == 'self-instruct' or (dataset_format is None and args.dataset == 'self-instruct'): for old, new in [["prompt", "input"], ["completion", "output"]]: dataset = dataset.rename_column(old, new) elif dataset_format == 'hh-rlhf' or (dataset_format is None and args.dataset == 'hh-rlhf'): dataset = dataset.map(lambda x: { 'input': '', 'output': x['chosen'] }) elif dataset_format == 'oasst1' or (dataset_format is None and args.dataset == 'oasst1'): dataset = dataset.map(lambda x: { 'input': '', 'output': x['text'], }) elif dataset_format == 'input-output': # leave as is pass # Remove unused columns. dataset = dataset.remove_columns( [col for col in dataset.column_names['train'] if col not in ['input', 'output']] ) return dataset # Load dataset. dataset = load_data(args.dataset) dataset = format_dataset(dataset, args.dataset_format) print(dataset) # Split train/eval, reduce size if args.do_eval or args.do_predict: if 'eval' in dataset: eval_dataset = dataset['eval'] else: print('Splitting train dataset in train and validation according to `eval_dataset_size`') dataset = dataset["train"].train_test_split( test_size=args.eval_dataset_size, shuffle=True, seed=42 ) eval_dataset = dataset['test'] if args.max_eval_samples is not None and len(eval_dataset) > args.max_eval_samples: eval_dataset = eval_dataset.select(range(args.max_eval_samples)) if args.group_by_length: eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])}) if args.do_train: train_dataset = dataset['train'] if args.max_train_samples is not None and len(train_dataset) > args.max_train_samples: train_dataset = train_dataset.select(range(args.max_train_samples)) if args.group_by_length: train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])}) data_collator = DataCollatorForCausalLM( tokenizer=tokenizer, source_max_len=args.source_max_len, target_max_len=args.target_max_len, train_on_source=args.train_on_source, predict_with_generate=args.predict_with_generate, ) return dict( train_dataset=train_dataset if args.do_train else None, eval_dataset=eval_dataset if args.do_eval else None, predict_dataset=eval_dataset if args.do_predict else None, data_collator=data_collator ) def get_last_checkpoint(checkpoint_dir): if isdir(checkpoint_dir): is_completed = exists(join(checkpoint_dir, 'completed')) if is_completed: return None, True # already finished max_step = 0 for filename in os.listdir(checkpoint_dir): if isdir(join(checkpoint_dir, filename)) and filename.startswith('checkpoint'): max_step = max(max_step, int(filename.replace('checkpoint-', ''))) if max_step == 0: return None, is_completed # training started, but no checkpoint checkpoint_dir = join(checkpoint_dir, f'checkpoint-{max_step}') print(f"Found a previous checkpoint at: {checkpoint_dir}") return checkpoint_dir, is_completed # checkpoint found! return None, False # first training def train(): hfparser = transformers.HfArgumentParser(( ModelArguments, DataArguments, TrainingArguments, GenerationArguments )) model_args, data_args, training_args, generation_args, extra_args = \ hfparser.parse_args_into_dataclasses(return_remaining_strings=True) #training_args.generation_config = transformers.GenerationConfig(**vars(generation_args)) args = argparse.Namespace( **vars(model_args), **vars(data_args), **vars(training_args) ) print(args) checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir) if completed_training: print('Detected that training was already completed!') model, tokenizer = get_accelerate_model(args, checkpoint_dir) model.config.use_cache = False print('loaded model') set_seed(args.seed) data_module = make_data_module(tokenizer=tokenizer, args=args) if torch.cuda.device_count() > 1: # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available model.is_parallelizable = True model.model_parallel = True trainer = Seq2SeqTrainer( model=model, tokenizer=tokenizer, args=training_args, **{k:v for k,v in data_module.items() if k != 'predict_dataset'}, ) # Callbacks if not args.full_finetune: trainer.add_callback(SavePeftModelCallback) if args.do_mmlu_eval: if args.mmlu_dataset == 'mmlu-zs': mmlu_dataset = load_dataset("json", data_files={ 'eval': 'data/mmlu/zero_shot_mmlu_val.json', 'test': 'data/mmlu/zero_shot_mmlu_test.json', }) mmlu_dataset = mmlu_dataset.remove_columns('subject') # MMLU Five-shot (Eval/Test only) elif args.mmlu_dataset == 'mmlu' or args.mmlu_dataset == 'mmlu-fs': mmlu_dataset = load_dataset("json", data_files={ 'eval': 'data/mmlu/five_shot_mmlu_val.json', 'test': 'data/mmlu/five_shot_mmlu_test.json', }) # mmlu_dataset = mmlu_dataset.remove_columns('subject') mmlu_dataset = mmlu_dataset[args.mmlu_split] if args.max_mmlu_samples is not None: mmlu_dataset = mmlu_dataset.select(range(args.max_mmlu_samples)) abcd_idx = [ tokenizer("A", add_special_tokens=False).input_ids[0], tokenizer("B", add_special_tokens=False).input_ids[0], tokenizer("C", add_special_tokens=False).input_ids[0], tokenizer("D", add_special_tokens=False).input_ids[0], ] accuracy = evaluate.load("accuracy") class MMLUEvalCallback(transformers.TrainerCallback): def on_evaluate(self, args, state, control, model, **kwargs): data_loader = trainer.get_eval_dataloader(mmlu_dataset) source_max_len = trainer.data_collator.source_max_len trainer.data_collator.source_max_len = args.mmlu_source_max_len trainer.model.eval() preds, refs = [], [] loss_mmlu = 0 for batch in tqdm(data_loader, total=len(data_loader)): (loss, logits, labels) = trainer.prediction_step(trainer.model,batch,prediction_loss_only=False,) # There are two tokens, the output, and eos token. for i, logit in enumerate(logits): label_non_zero_id = (batch['labels'][i] != -100).nonzero()[0][0] logit_abcd = logit[label_non_zero_id-1][abcd_idx] preds.append(torch.argmax(logit_abcd).item()) labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:,0] refs += [abcd_idx.index(label) for label in labels.tolist()] loss_mmlu += loss.item() # Extract results by subject. results = {'mmlu_loss':loss_mmlu/len(data_loader)} subject = mmlu_dataset['subject'] subjects = {s:{'refs':[], 'preds':[]} for s in set(subject)} for s,p,r in zip(subject, preds, refs): subjects[s]['preds'].append(p) subjects[s]['refs'].append(r) subject_scores = [] for subject in subjects: subject_score = accuracy.compute( references=subjects[subject]['refs'], predictions=subjects[subject]['preds'] )['accuracy'] results[f'mmlu_{args.mmlu_split}_accuracy_{subject}'] = subject_score subject_scores.append(subject_score) results[f'mmlu_{args.mmlu_split}_accuracy'] = np.mean(subject_scores) trainer.log(results) trainer.data_collator.source_max_len = source_max_len trainer.add_callback(MMLUEvalCallback) # Verifying the datatypes and parameter counts before training. print_trainable_parameters(args, model) dtypes = {} for _, p in model.named_parameters(): dtype = p.dtype if dtype not in dtypes: dtypes[dtype] = 0 dtypes[dtype] += p.numel() total = 0 for k, v in dtypes.items(): total+= v for k, v in dtypes.items(): print(k, v, v/total) all_metrics = {"run_name": args.run_name} # Training if args.do_train: logger.info("*** Train ***") # Note: `resume_from_checkpoint` not supported for adapter checkpoints by HF. # Currently adapter checkpoint is reloaded as expected but optimizer/scheduler states are not. train_result = trainer.train() metrics = train_result.metrics trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() all_metrics.update(metrics) # Evaluation if args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(metric_key_prefix="eval") trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) all_metrics.update(metrics) # Prediction if args.do_predict: logger.info("*** Predict ***") prediction_output = trainer.predict(test_dataset=data_module['predict_dataset'],metric_key_prefix="predict") prediction_metrics = prediction_output.metrics predictions = prediction_output.predictions predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id) predictions = tokenizer.batch_decode( predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) with open(os.path.join(args.output_dir, 'predictions.jsonl'), 'w') as fout: for i, example in enumerate(data_module['predict_dataset']): example['prediction_with_input'] = predictions[i].strip() example['prediction'] = predictions[i].replace(example['input'], '').strip() fout.write(json.dumps(example) + '\n') print(prediction_metrics) trainer.log_metrics("predict", prediction_metrics) trainer.save_metrics("predict", prediction_metrics) all_metrics.update(prediction_metrics) if (args.do_train or args.do_eval or args.do_predict): with open(os.path.join(args.output_dir, "metrics.json"), "w") as fout: fout.write(json.dumps(all_metrics)) if __name__ == "__main__": train()