File size: 77,318 Bytes
dc068a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 |
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Why should companies invest in UX design?
- text: Evaluate the efficiency of the current workflow.
- text: I need a resume for a finance analyst.
- text: Generate ideas for improving employee satisfaction.
- text: Generate a campaign for increasing our Instagram followers.
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9977272727272727
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 44 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| analyze | <ul><li>'Analyze the results from the A/B testing.'</li><li>'Evaluate the effectiveness of the new strategy.'</li><li>'What are the key insights from the customer survey?'</li></ul> |
| analyze advantages | <ul><li>'Analyze the advantages of social media marketing for startups.'</li><li>'Analyze the advantages of electric vehicles over gas-powered cars.'</li><li>'What are the benefits of a plant-based diet for health?'</li></ul> |
| analyze best practices | <ul><li>'What are the industry standards for data security?'</li><li>'Evaluate best practices for customer service.'</li><li>'Analyze best practices for social media marketing.'</li></ul> |
| analyze business proposal | <ul><li>'Analyze the competitive analysis in the business plan.'</li><li>'Evaluate the team structure mentioned in the proposal.'</li><li>'What are the key points in the executive summary?'</li></ul> |
| analyze data | <ul><li>'What does the data tell us about user engagement?'</li><li>'Analyze the sales data for the last quarter.'</li><li>'Analyze the data to determine customer preferences.'</li></ul> |
| analyze data backup and recovery | <ul><li>'Evaluate the effectiveness of the backup strategy.'</li><li>'Analyze the current data backup procedures.'</li><li>'What are the risks associated with our data recovery plan?'</li></ul> |
| analyze data visualization | <ul><li>'What does this bar chart tell us about customer demographics?'</li><li>'Interpret the data in this line chart.'</li><li>'Analyze the distribution shown in this histogram.'</li></ul> |
| analyze feedback | <ul><li>'Analyze customer feedback from the recent survey.'</li><li>'Analyze the feedback received from the beta testers.'</li><li>'Evaluate the feedback from the focus group.'</li></ul> |
| analyze information | <ul><li>'What are the main points from the research findings?'</li><li>'Evaluate the information from the competitor analysis.'</li><li>'What conclusions can be drawn from the survey results?'</li></ul> |
| analyze information technology security policy | <ul><li>'Evaluate the risks mentioned in the security policy.'</li><li>"Analyze the company's IT security policy."</li><li>'What are the strengths of our IT security measures?'</li></ul> |
| analyze job descriptions | <ul><li>'Analyze the job description for the new position.'</li><li>'What are the key responsibilities listed in the job description?'</li><li>'Evaluate the job description for inclusivity.'</li></ul> |
| analyze marketing campaign | <ul><li>'Evaluate the customer conversion rates from the Google Ads campaign.'</li><li>'What were the engagement rates for the spring sale campaign?'</li><li>'Assess the performance of the influencer marketing strategy.'</li></ul> |
| analyze packaging design | <ul><li>'What are the strengths and weaknesses of the packaging?'</li><li>'Evaluate the impact of packaging on brand perception.'</li><li>'Analyze the cost-effectiveness of the packaging design.'</li></ul> |
| analyze process | <ul><li>'What are the key steps in our product development process?'</li><li>'Evaluate the process for software deployment.'</li><li>'Analyze the process for onboarding new employees.'</li></ul> |
| analyze product description | <ul><li>'What are the strengths of this product description?'</li><li>'Evaluate the clarity of the product description.'</li><li>'Analyze the persuasiveness of the product features.'</li></ul> |
| analyze product rebranding | <ul><li>'What were the challenges faced during rebranding?'</li><li>'What are the key changes in the new branding?'</li><li>'Evaluate the customer response to the rebranding effort.'</li></ul> |
| analyze product recall | <ul><li>'Analyze the customer feedback after the recall.'</li><li>'What were the financial implications of the recall?'</li><li>'Evaluate the effectiveness of the recall process.'</li></ul> |
| analyze social media campaign | <ul><li>'Evaluate the reach and impressions of the LinkedIn posts.'</li><li>'Analyze the effectiveness of the Twitter campaign.'</li><li>'What improvements can be made to our social media campaigns?'</li></ul> |
| analyze time management | <ul><li>'Analyze how I can better prioritize my tasks.'</li><li>'Analyze my current time management techniques.'</li><li>'What are the weaknesses in my time management?'</li></ul> |
| analyze trends | <ul><li>'Analyze the social media trends influencing businesses.'</li><li>'What are the current trends in digital marketing?'</li><li>'Analyze the latest trends in the tech industry.'</li></ul> |
| analyze website concept | <ul><li>'Analyze the content strategy of the new website.'</li><li>'What are the key elements of a successful website concept?'</li><li>'Analyze the mobile responsiveness of the website design.'</li></ul> |
| bake | <ul><li>'Bake a loaf of banana bread.'</li><li>'How do I bake a cheesecake?'</li><li>'Bake a batch of brownies.'</li></ul> |
| define | <ul><li>"Define the term 'machine learning'."</li><li>"What does 'SEO' stand for?"</li><li>"Define 'data analytics'."</li></ul> |
| explain | <ul><li>"Explain the importance of cybersecurity in today's world."</li><li>'Explain how machine learning works.'</li><li>'Can you clarify what SEO involves?'</li></ul> |
| explain the importance of user experience design | <ul><li>'Explain how UX design improves accessibility.'</li><li>'Why is user experience design important for websites?'</li><li>'Why should companies invest in UX design?'</li></ul> |
| generate business proposal | <ul><li>'What is the format for a business proposal?'</li><li>'Generate a business proposal for a new product line.'</li><li>'Create a proposal for a partnership with another company.'</li></ul> |
| generate crisis communication plan | <ul><li>'Create a communication plan for a financial crisis.'</li><li>'Create a plan for communicating with stakeholders in a crisis.'</li><li>'Generate a plan for internal communication during a crisis.'</li></ul> |
| generate ideas | <ul><li>'Generate ideas for improving employee satisfaction.'</li><li>'Come up with ideas for our company’s anniversary event.'</li><li>'What are some unique selling points for our service?'</li></ul> |
| generate learning plan | <ul><li>'Create a learning plan for understanding machine learning concepts.'</li><li>'Create a plan for learning digital marketing skills.'</li><li>'What should be included in a learning plan for data science?'</li></ul> |
| generate product description | <ul><li>'Generate a product description for the new smartphone.'</li><li>'Create a detailed description of the latest software.'</li><li>'What should be included in a product description?'</li></ul> |
| generate product roadmap | <ul><li>'Create a roadmap for the new software development.'</li><li>'What should be included in a product roadmap?'</li><li>'Generate a product roadmap for customer feedback integration.'</li></ul> |
| generate project proposal | <ul><li>'What are the key elements of a project proposal?'</li><li>'What should be included in a project proposal?'</li><li>'Generate a proposal for a research project.'</li></ul> |
| generate recommendations | <ul><li>'Provide recommendations for streamlining operations.'</li><li>'Generate recommendations for improving customer service.'</li><li>'What are your recommendations for the new marketing strategy?'</li></ul> |
| generate resume | <ul><li>'I need a resume for a teaching position.'</li><li>'Generate a resume for a software engineer.'</li><li>'Generate a resume for a data scientist.'</li></ul> |
| generate social media campaign | <ul><li>"Create a campaign to highlight our company's sustainability efforts."</li><li>'Generate a campaign for increasing our Instagram followers.'</li><li>'I need a campaign plan for promoting our summer sale.'</li></ul> |
| generate template | <ul><li>'Can you make a template for job descriptions?'</li><li>'Create a template for a project proposal.'</li><li>'Generate a meeting agenda template.'</li></ul> |
| generate training program outline | <ul><li>'Generate a training program outline for new employees.'</li><li>'Generate an outline for diversity and inclusion training.'</li><li>'Create an outline for a leadership training program.'</li></ul> |
| learn a language | <ul><li>'How do I become fluent in Portuguese?'</li><li>'How can I practice English pronunciation?'</li><li>'What is the best way to learn Chinese characters?'</li></ul> |
| manage time | <ul><li>'How do I balance work and personal life?'</li><li>'Tips for managing time during exams.'</li><li>'How do I create a daily schedule?'</li></ul> |
| outline steps | <ul><li>'What are the steps to develop a training program?'</li><li>'Outline the steps to launch a new product.'</li><li>'Outline the steps to implement a new software system.'</li></ul> |
| provide general information | <ul><li>'Can you give me an overview of the new software?'</li><li>"Give me general information about the industry's trends."</li><li>'What are the key points about the product launch?'</li></ul> |
| recommend | <ul><li>'What are the top destinations for a vacation?'</li><li>'What podcasts would you suggest for entrepreneurs?'</li><li>'Recommend a good book on data science.'</li></ul> |
| summarize advantages | <ul><li>'Summarize the advantages of using renewable energy.'</li><li>'Summarize the advantages of social media marketing.'</li><li>'What are the benefits of using project management software?'</li></ul> |
| summarize financial report | <ul><li>'Summarize the main findings of the quarterly financial report.'</li><li>'Provide a summary of the financial projections.'</li><li>'What are the key metrics in the financial summary?'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9977 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nmlemus/setfit-paraphrase-mpnet-base-v2-surepath-chatgtp-dataset")
# Run inference
preds = model("I need a resume for a finance analyst.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 7.8795 | 13 |
| Label | Training Sample Count |
|:-------------------------------------------------|:----------------------|
| analyze | 10 |
| analyze advantages | 10 |
| analyze best practices | 10 |
| analyze business proposal | 10 |
| analyze data | 10 |
| analyze data backup and recovery | 10 |
| analyze data visualization | 10 |
| analyze feedback | 10 |
| analyze information | 10 |
| analyze information technology security policy | 10 |
| analyze job descriptions | 10 |
| analyze marketing campaign | 10 |
| analyze packaging design | 10 |
| analyze process | 10 |
| analyze product description | 10 |
| analyze product rebranding | 10 |
| analyze product recall | 10 |
| analyze social media campaign | 10 |
| analyze time management | 10 |
| analyze trends | 10 |
| analyze website concept | 10 |
| bake | 10 |
| define | 10 |
| explain | 10 |
| explain the importance of user experience design | 10 |
| generate business proposal | 10 |
| generate crisis communication plan | 10 |
| generate ideas | 10 |
| generate learning plan | 10 |
| generate product description | 10 |
| generate product roadmap | 10 |
| generate project proposal | 10 |
| generate recommendations | 10 |
| generate resume | 10 |
| generate social media campaign | 10 |
| generate template | 10 |
| generate training program outline | 10 |
| learn a language | 10 |
| manage time | 10 |
| outline steps | 10 |
| provide general information | 10 |
| recommend | 10 |
| summarize advantages | 10 |
| summarize financial report | 10 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:---------:|:-------------:|:---------------:|
| 0.0001 | 1 | 0.1037 | - |
| 0.0042 | 50 | 0.1544 | - |
| 0.0085 | 100 | 0.1555 | - |
| 0.0127 | 150 | 0.0948 | - |
| 0.0169 | 200 | 0.1176 | - |
| 0.0211 | 250 | 0.1108 | - |
| 0.0254 | 300 | 0.1169 | - |
| 0.0296 | 350 | 0.1291 | - |
| 0.0338 | 400 | 0.1068 | - |
| 0.0381 | 450 | 0.1369 | - |
| 0.0423 | 500 | 0.0823 | - |
| 0.0465 | 550 | 0.0732 | - |
| 0.0507 | 600 | 0.1006 | - |
| 0.0550 | 650 | 0.0638 | - |
| 0.0592 | 700 | 0.0818 | - |
| 0.0634 | 750 | 0.0542 | - |
| 0.0677 | 800 | 0.039 | - |
| 0.0719 | 850 | 0.0497 | - |
| 0.0761 | 900 | 0.016 | - |
| 0.0803 | 950 | 0.021 | - |
| 0.0846 | 1000 | 0.0136 | - |
| 0.0888 | 1050 | 0.0353 | - |
| 0.0930 | 1100 | 0.0164 | - |
| 0.0973 | 1150 | 0.0123 | - |
| 0.1015 | 1200 | 0.0218 | - |
| 0.1057 | 1250 | 0.0845 | - |
| 0.1099 | 1300 | 0.0082 | - |
| 0.1142 | 1350 | 0.0385 | - |
| 0.1184 | 1400 | 0.0087 | - |
| 0.1226 | 1450 | 0.0133 | - |
| 0.1268 | 1500 | 0.0045 | - |
| 0.1311 | 1550 | 0.0054 | - |
| 0.1353 | 1600 | 0.0078 | - |
| 0.1395 | 1650 | 0.0068 | - |
| 0.1438 | 1700 | 0.0586 | - |
| 0.1480 | 1750 | 0.0173 | - |
| 0.1522 | 1800 | 0.0585 | - |
| 0.1564 | 1850 | 0.0052 | - |
| 0.1607 | 1900 | 0.0046 | - |
| 0.1649 | 1950 | 0.0021 | - |
| 0.1691 | 2000 | 0.0092 | - |
| 0.1734 | 2050 | 0.0027 | - |
| 0.1776 | 2100 | 0.0041 | - |
| 0.1818 | 2150 | 0.0053 | - |
| 0.1860 | 2200 | 0.0585 | - |
| 0.1903 | 2250 | 0.0034 | - |
| 0.1945 | 2300 | 0.0601 | - |
| 0.1987 | 2350 | 0.0061 | - |
| 0.2030 | 2400 | 0.0022 | - |
| 0.2072 | 2450 | 0.0037 | - |
| 0.2114 | 2500 | 0.0019 | - |
| 0.2156 | 2550 | 0.0012 | - |
| 0.2199 | 2600 | 0.0031 | - |
| 0.2241 | 2650 | 0.0028 | - |
| 0.2283 | 2700 | 0.0011 | - |
| 0.2326 | 2750 | 0.0019 | - |
| 0.2368 | 2800 | 0.0638 | - |
| 0.2410 | 2850 | 0.0018 | - |
| 0.2452 | 2900 | 0.0017 | - |
| 0.2495 | 2950 | 0.0021 | - |
| 0.2537 | 3000 | 0.0016 | - |
| 0.2579 | 3050 | 0.0013 | - |
| 0.2622 | 3100 | 0.0017 | - |
| 0.2664 | 3150 | 0.0101 | - |
| 0.2706 | 3200 | 0.0029 | - |
| 0.2748 | 3250 | 0.0013 | - |
| 0.2791 | 3300 | 0.002 | - |
| 0.2833 | 3350 | 0.0079 | - |
| 0.2875 | 3400 | 0.0013 | - |
| 0.2918 | 3450 | 0.001 | - |
| 0.2960 | 3500 | 0.0015 | - |
| 0.3002 | 3550 | 0.0013 | - |
| 0.3044 | 3600 | 0.0017 | - |
| 0.3087 | 3650 | 0.0012 | - |
| 0.3129 | 3700 | 0.0007 | - |
| 0.3171 | 3750 | 0.0019 | - |
| 0.3214 | 3800 | 0.0008 | - |
| 0.3256 | 3850 | 0.0008 | - |
| 0.3298 | 3900 | 0.0007 | - |
| 0.3340 | 3950 | 0.0007 | - |
| 0.3383 | 4000 | 0.001 | - |
| 0.3425 | 4050 | 0.0005 | - |
| 0.3467 | 4100 | 0.0008 | - |
| 0.3510 | 4150 | 0.0007 | - |
| 0.3552 | 4200 | 0.0014 | - |
| 0.3594 | 4250 | 0.0005 | - |
| 0.3636 | 4300 | 0.0008 | - |
| 0.3679 | 4350 | 0.0006 | - |
| 0.3721 | 4400 | 0.0011 | - |
| 0.3763 | 4450 | 0.0006 | - |
| 0.3805 | 4500 | 0.0007 | - |
| 0.3848 | 4550 | 0.0006 | - |
| 0.3890 | 4600 | 0.0003 | - |
| 0.3932 | 4650 | 0.0022 | - |
| 0.3975 | 4700 | 0.0007 | - |
| 0.4017 | 4750 | 0.0031 | - |
| 0.4059 | 4800 | 0.0013 | - |
| 0.4101 | 4850 | 0.0015 | - |
| 0.4144 | 4900 | 0.0017 | - |
| 0.4186 | 4950 | 0.0007 | - |
| 0.4228 | 5000 | 0.0006 | - |
| 0.4271 | 5050 | 0.0006 | - |
| 0.4313 | 5100 | 0.0013 | - |
| 0.4355 | 5150 | 0.0003 | - |
| 0.4397 | 5200 | 0.12 | - |
| 0.4440 | 5250 | 0.0005 | - |
| 0.4482 | 5300 | 0.0006 | - |
| 0.4524 | 5350 | 0.0016 | - |
| 0.4567 | 5400 | 0.0008 | - |
| 0.4609 | 5450 | 0.0118 | - |
| 0.4651 | 5500 | 0.0003 | - |
| 0.4693 | 5550 | 0.0542 | - |
| 0.4736 | 5600 | 0.0011 | - |
| 0.4778 | 5650 | 0.0004 | - |
| 0.4820 | 5700 | 0.001 | - |
| 0.4863 | 5750 | 0.0008 | - |
| 0.4905 | 5800 | 0.0008 | - |
| 0.4947 | 5850 | 0.0004 | - |
| 0.4989 | 5900 | 0.0008 | - |
| 0.5032 | 5950 | 0.0009 | - |
| 0.5074 | 6000 | 0.0005 | - |
| 0.5116 | 6050 | 0.0006 | - |
| 0.5159 | 6100 | 0.0012 | - |
| 0.5201 | 6150 | 0.0004 | - |
| 0.5243 | 6200 | 0.0005 | - |
| 0.5285 | 6250 | 0.0007 | - |
| 0.5328 | 6300 | 0.0009 | - |
| 0.5370 | 6350 | 0.0006 | - |
| 0.5412 | 6400 | 0.0007 | - |
| 0.5455 | 6450 | 0.0007 | - |
| 0.5497 | 6500 | 0.0003 | - |
| 0.5539 | 6550 | 0.0568 | - |
| 0.5581 | 6600 | 0.0006 | - |
| 0.5624 | 6650 | 0.0002 | - |
| 0.5666 | 6700 | 0.0006 | - |
| 0.5708 | 6750 | 0.0003 | - |
| 0.5751 | 6800 | 0.0003 | - |
| 0.5793 | 6850 | 0.0004 | - |
| 0.5835 | 6900 | 0.0006 | - |
| 0.5877 | 6950 | 0.0004 | - |
| 0.5920 | 7000 | 0.0004 | - |
| 0.5962 | 7050 | 0.0002 | - |
| 0.6004 | 7100 | 0.0002 | - |
| 0.6047 | 7150 | 0.001 | - |
| 0.6089 | 7200 | 0.0002 | - |
| 0.6131 | 7250 | 0.0004 | - |
| 0.6173 | 7300 | 0.0009 | - |
| 0.6216 | 7350 | 0.0003 | - |
| 0.6258 | 7400 | 0.0003 | - |
| 0.6300 | 7450 | 0.0018 | - |
| 0.6342 | 7500 | 0.0004 | - |
| 0.6385 | 7550 | 0.0035 | - |
| 0.6427 | 7600 | 0.0012 | - |
| 0.6469 | 7650 | 0.0005 | - |
| 0.6512 | 7700 | 0.0003 | - |
| 0.6554 | 7750 | 0.0003 | - |
| 0.6596 | 7800 | 0.0004 | - |
| 0.6638 | 7850 | 0.0004 | - |
| 0.6681 | 7900 | 0.0004 | - |
| 0.6723 | 7950 | 0.0003 | - |
| 0.6765 | 8000 | 0.0002 | - |
| 0.6808 | 8050 | 0.0002 | - |
| 0.6850 | 8100 | 0.0008 | - |
| 0.6892 | 8150 | 0.0003 | - |
| 0.6934 | 8200 | 0.0002 | - |
| 0.6977 | 8250 | 0.0003 | - |
| 0.7019 | 8300 | 0.0002 | - |
| 0.7061 | 8350 | 0.0024 | - |
| 0.7104 | 8400 | 0.0022 | - |
| 0.7146 | 8450 | 0.0004 | - |
| 0.7188 | 8500 | 0.0092 | - |
| 0.7230 | 8550 | 0.0002 | - |
| 0.7273 | 8600 | 0.0001 | - |
| 0.7315 | 8650 | 0.0002 | - |
| 0.7357 | 8700 | 0.0003 | - |
| 0.7400 | 8750 | 0.0005 | - |
| 0.7442 | 8800 | 0.0002 | - |
| 0.7484 | 8850 | 0.0005 | - |
| 0.7526 | 8900 | 0.0002 | - |
| 0.7569 | 8950 | 0.0002 | - |
| 0.7611 | 9000 | 0.0002 | - |
| 0.7653 | 9050 | 0.0002 | - |
| 0.7696 | 9100 | 0.0001 | - |
| 0.7738 | 9150 | 0.0002 | - |
| 0.7780 | 9200 | 0.0004 | - |
| 0.7822 | 9250 | 0.0003 | - |
| 0.7865 | 9300 | 0.0003 | - |
| 0.7907 | 9350 | 0.0002 | - |
| 0.7949 | 9400 | 0.0005 | - |
| 0.7992 | 9450 | 0.0002 | - |
| 0.8034 | 9500 | 0.0002 | - |
| 0.8076 | 9550 | 0.0017 | - |
| 0.8118 | 9600 | 0.0004 | - |
| 0.8161 | 9650 | 0.0003 | - |
| 0.8203 | 9700 | 0.0002 | - |
| 0.8245 | 9750 | 0.0002 | - |
| 0.8288 | 9800 | 0.0001 | - |
| 0.8330 | 9850 | 0.0001 | - |
| 0.8372 | 9900 | 0.0001 | - |
| 0.8414 | 9950 | 0.0005 | - |
| 0.8457 | 10000 | 0.0001 | - |
| 0.8499 | 10050 | 0.0001 | - |
| 0.8541 | 10100 | 0.0002 | - |
| 0.8584 | 10150 | 0.0002 | - |
| 0.8626 | 10200 | 0.0003 | - |
| 0.8668 | 10250 | 0.0003 | - |
| 0.8710 | 10300 | 0.0002 | - |
| 0.8753 | 10350 | 0.0002 | - |
| 0.8795 | 10400 | 0.001 | - |
| 0.8837 | 10450 | 0.0008 | - |
| 0.8879 | 10500 | 0.0005 | - |
| 0.8922 | 10550 | 0.0017 | - |
| 0.8964 | 10600 | 0.0606 | - |
| 0.9006 | 10650 | 0.0002 | - |
| 0.9049 | 10700 | 0.0003 | - |
| 0.9091 | 10750 | 0.0005 | - |
| 0.9133 | 10800 | 0.0008 | - |
| 0.9175 | 10850 | 0.0003 | - |
| 0.9218 | 10900 | 0.002 | - |
| 0.9260 | 10950 | 0.0003 | - |
| 0.9302 | 11000 | 0.0003 | - |
| 0.9345 | 11050 | 0.0003 | - |
| 0.9387 | 11100 | 0.0243 | - |
| 0.9429 | 11150 | 0.0016 | - |
| 0.9471 | 11200 | 0.021 | - |
| 0.9514 | 11250 | 0.0003 | - |
| 0.9556 | 11300 | 0.0006 | - |
| 0.9598 | 11350 | 0.0166 | - |
| 0.9641 | 11400 | 0.0014 | - |
| 0.9683 | 11450 | 0.0004 | - |
| 0.9725 | 11500 | 0.0006 | - |
| 0.9767 | 11550 | 0.0001 | - |
| 0.9810 | 11600 | 0.0002 | - |
| 0.9852 | 11650 | 0.0021 | - |
| 0.9894 | 11700 | 0.0004 | - |
| 0.9937 | 11750 | 0.0002 | - |
| 0.9979 | 11800 | 0.0003 | - |
| 1.0 | 11825 | - | 0.0019 |
| 1.0021 | 11850 | 0.0002 | - |
| 1.0063 | 11900 | 0.0002 | - |
| 1.0106 | 11950 | 0.0002 | - |
| 1.0148 | 12000 | 0.0002 | - |
| 1.0190 | 12050 | 0.0002 | - |
| 1.0233 | 12100 | 0.0002 | - |
| 1.0275 | 12150 | 0.0002 | - |
| 1.0317 | 12200 | 0.0002 | - |
| 1.0359 | 12250 | 0.0005 | - |
| 1.0402 | 12300 | 0.0002 | - |
| 1.0444 | 12350 | 0.0002 | - |
| 1.0486 | 12400 | 0.0004 | - |
| 1.0529 | 12450 | 0.0002 | - |
| 1.0571 | 12500 | 0.0002 | - |
| 1.0613 | 12550 | 0.0001 | - |
| 1.0655 | 12600 | 0.0001 | - |
| 1.0698 | 12650 | 0.0001 | - |
| 1.0740 | 12700 | 0.0001 | - |
| 1.0782 | 12750 | 0.0001 | - |
| 1.0825 | 12800 | 0.0002 | - |
| 1.0867 | 12850 | 0.0001 | - |
| 1.0909 | 12900 | 0.0002 | - |
| 1.0951 | 12950 | 0.0002 | - |
| 1.0994 | 13000 | 0.0002 | - |
| 1.1036 | 13050 | 0.0002 | - |
| 1.1078 | 13100 | 0.0001 | - |
| 1.1121 | 13150 | 0.0002 | - |
| 1.1163 | 13200 | 0.0236 | - |
| 1.1205 | 13250 | 0.0002 | - |
| 1.1247 | 13300 | 0.0001 | - |
| 1.1290 | 13350 | 0.0023 | - |
| 1.1332 | 13400 | 0.0003 | - |
| 1.1374 | 13450 | 0.0001 | - |
| 1.1416 | 13500 | 0.0003 | - |
| 1.1459 | 13550 | 0.0003 | - |
| 1.1501 | 13600 | 0.0004 | - |
| 1.1543 | 13650 | 0.0002 | - |
| 1.1586 | 13700 | 0.0002 | - |
| 1.1628 | 13750 | 0.0001 | - |
| 1.1670 | 13800 | 0.0001 | - |
| 1.1712 | 13850 | 0.0001 | - |
| 1.1755 | 13900 | 0.0001 | - |
| 1.1797 | 13950 | 0.0001 | - |
| 1.1839 | 14000 | 0.0001 | - |
| 1.1882 | 14050 | 0.0002 | - |
| 1.1924 | 14100 | 0.0002 | - |
| 1.1966 | 14150 | 0.0001 | - |
| 1.2008 | 14200 | 0.0002 | - |
| 1.2051 | 14250 | 0.0003 | - |
| 1.2093 | 14300 | 0.0001 | - |
| 1.2135 | 14350 | 0.0001 | - |
| 1.2178 | 14400 | 0.0002 | - |
| 1.2220 | 14450 | 0.001 | - |
| 1.2262 | 14500 | 0.0001 | - |
| 1.2304 | 14550 | 0.0001 | - |
| 1.2347 | 14600 | 0.0001 | - |
| 1.2389 | 14650 | 0.0002 | - |
| 1.2431 | 14700 | 0.0001 | - |
| 1.2474 | 14750 | 0.0002 | - |
| 1.2516 | 14800 | 0.0001 | - |
| 1.2558 | 14850 | 0.0001 | - |
| 1.2600 | 14900 | 0.0001 | - |
| 1.2643 | 14950 | 0.0002 | - |
| 1.2685 | 15000 | 0.0001 | - |
| 1.2727 | 15050 | 0.0061 | - |
| 1.2770 | 15100 | 0.0001 | - |
| 1.2812 | 15150 | 0.0004 | - |
| 1.2854 | 15200 | 0.0002 | - |
| 1.2896 | 15250 | 0.0002 | - |
| 1.2939 | 15300 | 0.0001 | - |
| 1.2981 | 15350 | 0.0001 | - |
| 1.3023 | 15400 | 0.0001 | - |
| 1.3066 | 15450 | 0.0002 | - |
| 1.3108 | 15500 | 0.0001 | - |
| 1.3150 | 15550 | 0.0001 | - |
| 1.3192 | 15600 | 0.002 | - |
| 1.3235 | 15650 | 0.0004 | - |
| 1.3277 | 15700 | 0.0001 | - |
| 1.3319 | 15750 | 0.0001 | - |
| 1.3362 | 15800 | 0.0002 | - |
| 1.3404 | 15850 | 0.0001 | - |
| 1.3446 | 15900 | 0.0001 | - |
| 1.3488 | 15950 | 0.0001 | - |
| 1.3531 | 16000 | 0.0002 | - |
| 1.3573 | 16050 | 0.0001 | - |
| 1.3615 | 16100 | 0.0003 | - |
| 1.3658 | 16150 | 0.0001 | - |
| 1.3700 | 16200 | 0.0001 | - |
| 1.3742 | 16250 | 0.0001 | - |
| 1.3784 | 16300 | 0.0001 | - |
| 1.3827 | 16350 | 0.0001 | - |
| 1.3869 | 16400 | 0.0001 | - |
| 1.3911 | 16450 | 0.0004 | - |
| 1.3953 | 16500 | 0.0002 | - |
| 1.3996 | 16550 | 0.0001 | - |
| 1.4038 | 16600 | 0.0001 | - |
| 1.4080 | 16650 | 0.0001 | - |
| 1.4123 | 16700 | 0.0001 | - |
| 1.4165 | 16750 | 0.0001 | - |
| 1.4207 | 16800 | 0.0001 | - |
| 1.4249 | 16850 | 0.0001 | - |
| 1.4292 | 16900 | 0.0001 | - |
| 1.4334 | 16950 | 0.0024 | - |
| 1.4376 | 17000 | 0.0001 | - |
| 1.4419 | 17050 | 0.0002 | - |
| 1.4461 | 17100 | 0.0001 | - |
| 1.4503 | 17150 | 0.0001 | - |
| 1.4545 | 17200 | 0.0001 | - |
| 1.4588 | 17250 | 0.0001 | - |
| 1.4630 | 17300 | 0.0606 | - |
| 1.4672 | 17350 | 0.0004 | - |
| 1.4715 | 17400 | 0.0001 | - |
| 1.4757 | 17450 | 0.0007 | - |
| 1.4799 | 17500 | 0.0001 | - |
| 1.4841 | 17550 | 0.0001 | - |
| 1.4884 | 17600 | 0.0001 | - |
| 1.4926 | 17650 | 0.0002 | - |
| 1.4968 | 17700 | 0.0015 | - |
| 1.5011 | 17750 | 0.0001 | - |
| 1.5053 | 17800 | 0.0001 | - |
| 1.5095 | 17850 | 0.0002 | - |
| 1.5137 | 17900 | 0.0002 | - |
| 1.5180 | 17950 | 0.0001 | - |
| 1.5222 | 18000 | 0.0001 | - |
| 1.5264 | 18050 | 0.0001 | - |
| 1.5307 | 18100 | 0.0001 | - |
| 1.5349 | 18150 | 0.0002 | - |
| 1.5391 | 18200 | 0.0001 | - |
| 1.5433 | 18250 | 0.0001 | - |
| 1.5476 | 18300 | 0.0001 | - |
| 1.5518 | 18350 | 0.0001 | - |
| 1.5560 | 18400 | 0.0002 | - |
| 1.5603 | 18450 | 0.0001 | - |
| 1.5645 | 18500 | 0.0001 | - |
| 1.5687 | 18550 | 0.0001 | - |
| 1.5729 | 18600 | 0.0001 | - |
| 1.5772 | 18650 | 0.0001 | - |
| 1.5814 | 18700 | 0.0002 | - |
| 1.5856 | 18750 | 0.0001 | - |
| 1.5899 | 18800 | 0.0001 | - |
| 1.5941 | 18850 | 0.0001 | - |
| 1.5983 | 18900 | 0.0009 | - |
| 1.6025 | 18950 | 0.0001 | - |
| 1.6068 | 19000 | 0.0002 | - |
| 1.6110 | 19050 | 0.0013 | - |
| 1.6152 | 19100 | 0.0001 | - |
| 1.6195 | 19150 | 0.0005 | - |
| 1.6237 | 19200 | 0.0001 | - |
| 1.6279 | 19250 | 0.0016 | - |
| 1.6321 | 19300 | 0.0001 | - |
| 1.6364 | 19350 | 0.0001 | - |
| 1.6406 | 19400 | 0.0015 | - |
| 1.6448 | 19450 | 0.0001 | - |
| 1.6490 | 19500 | 0.0001 | - |
| 1.6533 | 19550 | 0.0001 | - |
| 1.6575 | 19600 | 0.0001 | - |
| 1.6617 | 19650 | 0.0001 | - |
| 1.6660 | 19700 | 0.0001 | - |
| 1.6702 | 19750 | 0.0001 | - |
| 1.6744 | 19800 | 0.0001 | - |
| 1.6786 | 19850 | 0.0001 | - |
| 1.6829 | 19900 | 0.0001 | - |
| 1.6871 | 19950 | 0.0001 | - |
| 1.6913 | 20000 | 0.0001 | - |
| 1.6956 | 20050 | 0.0001 | - |
| 1.6998 | 20100 | 0.0001 | - |
| 1.7040 | 20150 | 0.0001 | - |
| 1.7082 | 20200 | 0.0001 | - |
| 1.7125 | 20250 | 0.0001 | - |
| 1.7167 | 20300 | 0.0001 | - |
| 1.7209 | 20350 | 0.0001 | - |
| 1.7252 | 20400 | 0.0001 | - |
| 1.7294 | 20450 | 0.0001 | - |
| 1.7336 | 20500 | 0.002 | - |
| 1.7378 | 20550 | 0.0001 | - |
| 1.7421 | 20600 | 0.0001 | - |
| 1.7463 | 20650 | 0.0001 | - |
| 1.7505 | 20700 | 0.0001 | - |
| 1.7548 | 20750 | 0.0001 | - |
| 1.7590 | 20800 | 0.0001 | - |
| 1.7632 | 20850 | 0.0001 | - |
| 1.7674 | 20900 | 0.0001 | - |
| 1.7717 | 20950 | 0.0002 | - |
| 1.7759 | 21000 | 0.0001 | - |
| 1.7801 | 21050 | 0.0004 | - |
| 1.7844 | 21100 | 0.0002 | - |
| 1.7886 | 21150 | 0.0599 | - |
| 1.7928 | 21200 | 0.0001 | - |
| 1.7970 | 21250 | 0.0001 | - |
| 1.8013 | 21300 | 0.0001 | - |
| 1.8055 | 21350 | 0.0001 | - |
| 1.8097 | 21400 | 0.0001 | - |
| 1.8140 | 21450 | 0.0001 | - |
| 1.8182 | 21500 | 0.0001 | - |
| 1.8224 | 21550 | 0.0001 | - |
| 1.8266 | 21600 | 0.0001 | - |
| 1.8309 | 21650 | 0.0013 | - |
| 1.8351 | 21700 | 0.0002 | - |
| 1.8393 | 21750 | 0.0001 | - |
| 1.8436 | 21800 | 0.0001 | - |
| 1.8478 | 21850 | 0.0001 | - |
| 1.8520 | 21900 | 0.0001 | - |
| 1.8562 | 21950 | 0.0001 | - |
| 1.8605 | 22000 | 0.0001 | - |
| 1.8647 | 22050 | 0.0001 | - |
| 1.8689 | 22100 | 0.0001 | - |
| 1.8732 | 22150 | 0.0 | - |
| 1.8774 | 22200 | 0.0001 | - |
| 1.8816 | 22250 | 0.0001 | - |
| 1.8858 | 22300 | 0.0001 | - |
| 1.8901 | 22350 | 0.0001 | - |
| 1.8943 | 22400 | 0.0001 | - |
| 1.8985 | 22450 | 0.0001 | - |
| 1.9027 | 22500 | 0.0001 | - |
| 1.9070 | 22550 | 0.0001 | - |
| 1.9112 | 22600 | 0.0001 | - |
| 1.9154 | 22650 | 0.0001 | - |
| 1.9197 | 22700 | 0.0001 | - |
| 1.9239 | 22750 | 0.0001 | - |
| 1.9281 | 22800 | 0.0001 | - |
| 1.9323 | 22850 | 0.0001 | - |
| 1.9366 | 22900 | 0.0001 | - |
| 1.9408 | 22950 | 0.0 | - |
| 1.9450 | 23000 | 0.0016 | - |
| 1.9493 | 23050 | 0.0001 | - |
| 1.9535 | 23100 | 0.0002 | - |
| 1.9577 | 23150 | 0.0001 | - |
| 1.9619 | 23200 | 0.0001 | - |
| 1.9662 | 23250 | 0.0001 | - |
| 1.9704 | 23300 | 0.0001 | - |
| 1.9746 | 23350 | 0.0001 | - |
| 1.9789 | 23400 | 0.0001 | - |
| 1.9831 | 23450 | 0.0001 | - |
| 1.9873 | 23500 | 0.0016 | - |
| 1.9915 | 23550 | 0.0001 | - |
| 1.9958 | 23600 | 0.0001 | - |
| 2.0 | 23650 | 0.0001 | 0.0008 |
| 2.0042 | 23700 | 0.0001 | - |
| 2.0085 | 23750 | 0.0017 | - |
| 2.0127 | 23800 | 0.0001 | - |
| 2.0169 | 23850 | 0.0 | - |
| 2.0211 | 23900 | 0.0001 | - |
| 2.0254 | 23950 | 0.0001 | - |
| 2.0296 | 24000 | 0.0001 | - |
| 2.0338 | 24050 | 0.0001 | - |
| 2.0381 | 24100 | 0.0001 | - |
| 2.0423 | 24150 | 0.0001 | - |
| 2.0465 | 24200 | 0.0001 | - |
| 2.0507 | 24250 | 0.0001 | - |
| 2.0550 | 24300 | 0.0001 | - |
| 2.0592 | 24350 | 0.0001 | - |
| 2.0634 | 24400 | 0.0001 | - |
| 2.0677 | 24450 | 0.0 | - |
| 2.0719 | 24500 | 0.0001 | - |
| 2.0761 | 24550 | 0.0001 | - |
| 2.0803 | 24600 | 0.0001 | - |
| 2.0846 | 24650 | 0.0001 | - |
| 2.0888 | 24700 | 0.0002 | - |
| 2.0930 | 24750 | 0.0002 | - |
| 2.0973 | 24800 | 0.0001 | - |
| 2.1015 | 24850 | 0.0006 | - |
| 2.1057 | 24900 | 0.0579 | - |
| 2.1099 | 24950 | 0.0001 | - |
| 2.1142 | 25000 | 0.0004 | - |
| 2.1184 | 25050 | 0.0011 | - |
| 2.1226 | 25100 | 0.0001 | - |
| 2.1268 | 25150 | 0.0002 | - |
| 2.1311 | 25200 | 0.0003 | - |
| 2.1353 | 25250 | 0.0001 | - |
| 2.1395 | 25300 | 0.0014 | - |
| 2.1438 | 25350 | 0.0001 | - |
| 2.1480 | 25400 | 0.0002 | - |
| 2.1522 | 25450 | 0.0012 | - |
| 2.1564 | 25500 | 0.0001 | - |
| 2.1607 | 25550 | 0.0001 | - |
| 2.1649 | 25600 | 0.0002 | - |
| 2.1691 | 25650 | 0.0001 | - |
| 2.1734 | 25700 | 0.0001 | - |
| 2.1776 | 25750 | 0.0001 | - |
| 2.1818 | 25800 | 0.0001 | - |
| 2.1860 | 25850 | 0.0544 | - |
| 2.1903 | 25900 | 0.0001 | - |
| 2.1945 | 25950 | 0.0001 | - |
| 2.1987 | 26000 | 0.0001 | - |
| 2.2030 | 26050 | 0.0001 | - |
| 2.2072 | 26100 | 0.0001 | - |
| 2.2114 | 26150 | 0.0001 | - |
| 2.2156 | 26200 | 0.0002 | - |
| 2.2199 | 26250 | 0.0 | - |
| 2.2241 | 26300 | 0.0001 | - |
| 2.2283 | 26350 | 0.0002 | - |
| 2.2326 | 26400 | 0.0001 | - |
| 2.2368 | 26450 | 0.0001 | - |
| 2.2410 | 26500 | 0.0602 | - |
| 2.2452 | 26550 | 0.0022 | - |
| 2.2495 | 26600 | 0.0001 | - |
| 2.2537 | 26650 | 0.0003 | - |
| 2.2579 | 26700 | 0.0002 | - |
| 2.2622 | 26750 | 0.0001 | - |
| 2.2664 | 26800 | 0.0001 | - |
| 2.2706 | 26850 | 0.0001 | - |
| 2.2748 | 26900 | 0.0001 | - |
| 2.2791 | 26950 | 0.0001 | - |
| 2.2833 | 27000 | 0.0001 | - |
| 2.2875 | 27050 | 0.0001 | - |
| 2.2918 | 27100 | 0.0001 | - |
| 2.2960 | 27150 | 0.0001 | - |
| 2.3002 | 27200 | 0.0001 | - |
| 2.3044 | 27250 | 0.0001 | - |
| 2.3087 | 27300 | 0.0001 | - |
| 2.3129 | 27350 | 0.0003 | - |
| 2.3171 | 27400 | 0.0001 | - |
| 2.3214 | 27450 | 0.0001 | - |
| 2.3256 | 27500 | 0.0001 | - |
| 2.3298 | 27550 | 0.0001 | - |
| 2.3340 | 27600 | 0.0001 | - |
| 2.3383 | 27650 | 0.0001 | - |
| 2.3425 | 27700 | 0.0015 | - |
| 2.3467 | 27750 | 0.001 | - |
| 2.3510 | 27800 | 0.0002 | - |
| 2.3552 | 27850 | 0.0001 | - |
| 2.3594 | 27900 | 0.0001 | - |
| 2.3636 | 27950 | 0.0001 | - |
| 2.3679 | 28000 | 0.0002 | - |
| 2.3721 | 28050 | 0.0001 | - |
| 2.3763 | 28100 | 0.0001 | - |
| 2.3805 | 28150 | 0.001 | - |
| 2.3848 | 28200 | 0.0001 | - |
| 2.3890 | 28250 | 0.0001 | - |
| 2.3932 | 28300 | 0.0001 | - |
| 2.3975 | 28350 | 0.0001 | - |
| 2.4017 | 28400 | 0.0002 | - |
| 2.4059 | 28450 | 0.0001 | - |
| 2.4101 | 28500 | 0.0001 | - |
| 2.4144 | 28550 | 0.0001 | - |
| 2.4186 | 28600 | 0.0001 | - |
| 2.4228 | 28650 | 0.0001 | - |
| 2.4271 | 28700 | 0.0001 | - |
| 2.4313 | 28750 | 0.0001 | - |
| 2.4355 | 28800 | 0.0001 | - |
| 2.4397 | 28850 | 0.0001 | - |
| 2.4440 | 28900 | 0.0001 | - |
| 2.4482 | 28950 | 0.0001 | - |
| 2.4524 | 29000 | 0.0001 | - |
| 2.4567 | 29050 | 0.0021 | - |
| 2.4609 | 29100 | 0.0001 | - |
| 2.4651 | 29150 | 0.0001 | - |
| 2.4693 | 29200 | 0.0001 | - |
| 2.4736 | 29250 | 0.0 | - |
| 2.4778 | 29300 | 0.0002 | - |
| 2.4820 | 29350 | 0.0002 | - |
| 2.4863 | 29400 | 0.0001 | - |
| 2.4905 | 29450 | 0.0001 | - |
| 2.4947 | 29500 | 0.0002 | - |
| 2.4989 | 29550 | 0.0013 | - |
| 2.5032 | 29600 | 0.0001 | - |
| 2.5074 | 29650 | 0.0001 | - |
| 2.5116 | 29700 | 0.0001 | - |
| 2.5159 | 29750 | 0.0001 | - |
| 2.5201 | 29800 | 0.0015 | - |
| 2.5243 | 29850 | 0.0001 | - |
| 2.5285 | 29900 | 0.0001 | - |
| 2.5328 | 29950 | 0.0001 | - |
| 2.5370 | 30000 | 0.0002 | - |
| 2.5412 | 30050 | 0.0001 | - |
| 2.5455 | 30100 | 0.0001 | - |
| 2.5497 | 30150 | 0.0001 | - |
| 2.5539 | 30200 | 0.0001 | - |
| 2.5581 | 30250 | 0.0001 | - |
| 2.5624 | 30300 | 0.0002 | - |
| 2.5666 | 30350 | 0.0001 | - |
| 2.5708 | 30400 | 0.0001 | - |
| 2.5751 | 30450 | 0.0001 | - |
| 2.5793 | 30500 | 0.0001 | - |
| 2.5835 | 30550 | 0.0001 | - |
| 2.5877 | 30600 | 0.0001 | - |
| 2.5920 | 30650 | 0.0001 | - |
| 2.5962 | 30700 | 0.0 | - |
| 2.6004 | 30750 | 0.0001 | - |
| 2.6047 | 30800 | 0.0001 | - |
| 2.6089 | 30850 | 0.0001 | - |
| 2.6131 | 30900 | 0.0001 | - |
| 2.6173 | 30950 | 0.0001 | - |
| 2.6216 | 31000 | 0.0001 | - |
| 2.6258 | 31050 | 0.0001 | - |
| 2.6300 | 31100 | 0.0001 | - |
| 2.6342 | 31150 | 0.0001 | - |
| 2.6385 | 31200 | 0.0001 | - |
| 2.6427 | 31250 | 0.0001 | - |
| 2.6469 | 31300 | 0.0001 | - |
| 2.6512 | 31350 | 0.0024 | - |
| 2.6554 | 31400 | 0.0001 | - |
| 2.6596 | 31450 | 0.0001 | - |
| 2.6638 | 31500 | 0.0025 | - |
| 2.6681 | 31550 | 0.0001 | - |
| 2.6723 | 31600 | 0.0001 | - |
| 2.6765 | 31650 | 0.0002 | - |
| 2.6808 | 31700 | 0.0001 | - |
| 2.6850 | 31750 | 0.0 | - |
| 2.6892 | 31800 | 0.0001 | - |
| 2.6934 | 31850 | 0.0001 | - |
| 2.6977 | 31900 | 0.0001 | - |
| 2.7019 | 31950 | 0.0001 | - |
| 2.7061 | 32000 | 0.0001 | - |
| 2.7104 | 32050 | 0.0001 | - |
| 2.7146 | 32100 | 0.0001 | - |
| 2.7188 | 32150 | 0.0001 | - |
| 2.7230 | 32200 | 0.0001 | - |
| 2.7273 | 32250 | 0.0001 | - |
| 2.7315 | 32300 | 0.0 | - |
| 2.7357 | 32350 | 0.0001 | - |
| 2.7400 | 32400 | 0.0001 | - |
| 2.7442 | 32450 | 0.0001 | - |
| 2.7484 | 32500 | 0.0001 | - |
| 2.7526 | 32550 | 0.0001 | - |
| 2.7569 | 32600 | 0.0016 | - |
| 2.7611 | 32650 | 0.0001 | - |
| 2.7653 | 32700 | 0.0001 | - |
| 2.7696 | 32750 | 0.0001 | - |
| 2.7738 | 32800 | 0.0001 | - |
| 2.7780 | 32850 | 0.0001 | - |
| 2.7822 | 32900 | 0.0001 | - |
| 2.7865 | 32950 | 0.0001 | - |
| 2.7907 | 33000 | 0.0001 | - |
| 2.7949 | 33050 | 0.0001 | - |
| 2.7992 | 33100 | 0.0001 | - |
| 2.8034 | 33150 | 0.0001 | - |
| 2.8076 | 33200 | 0.0001 | - |
| 2.8118 | 33250 | 0.0001 | - |
| 2.8161 | 33300 | 0.0001 | - |
| 2.8203 | 33350 | 0.0001 | - |
| 2.8245 | 33400 | 0.0001 | - |
| 2.8288 | 33450 | 0.0001 | - |
| 2.8330 | 33500 | 0.0 | - |
| 2.8372 | 33550 | 0.0 | - |
| 2.8414 | 33600 | 0.0001 | - |
| 2.8457 | 33650 | 0.0001 | - |
| 2.8499 | 33700 | 0.0001 | - |
| 2.8541 | 33750 | 0.0016 | - |
| 2.8584 | 33800 | 0.0001 | - |
| 2.8626 | 33850 | 0.0001 | - |
| 2.8668 | 33900 | 0.0001 | - |
| 2.8710 | 33950 | 0.0001 | - |
| 2.8753 | 34000 | 0.0001 | - |
| 2.8795 | 34050 | 0.0001 | - |
| 2.8837 | 34100 | 0.0001 | - |
| 2.8879 | 34150 | 0.0001 | - |
| 2.8922 | 34200 | 0.0 | - |
| 2.8964 | 34250 | 0.0001 | - |
| 2.9006 | 34300 | 0.0001 | - |
| 2.9049 | 34350 | 0.0001 | - |
| 2.9091 | 34400 | 0.0001 | - |
| 2.9133 | 34450 | 0.0001 | - |
| 2.9175 | 34500 | 0.0001 | - |
| 2.9218 | 34550 | 0.0 | - |
| 2.9260 | 34600 | 0.0001 | - |
| 2.9302 | 34650 | 0.0001 | - |
| 2.9345 | 34700 | 0.0001 | - |
| 2.9387 | 34750 | 0.0155 | - |
| 2.9429 | 34800 | 0.0001 | - |
| 2.9471 | 34850 | 0.0 | - |
| 2.9514 | 34900 | 0.0001 | - |
| 2.9556 | 34950 | 0.0001 | - |
| 2.9598 | 35000 | 0.0001 | - |
| 2.9641 | 35050 | 0.0 | - |
| 2.9683 | 35100 | 0.0018 | - |
| 2.9725 | 35150 | 0.0001 | - |
| 2.9767 | 35200 | 0.0001 | - |
| 2.9810 | 35250 | 0.0001 | - |
| 2.9852 | 35300 | 0.0001 | - |
| 2.9894 | 35350 | 0.0001 | - |
| 2.9937 | 35400 | 0.0001 | - |
| 2.9979 | 35450 | 0.0001 | - |
| 3.0 | 35475 | - | 0.0003 |
| 3.0021 | 35500 | 0.0001 | - |
| 3.0063 | 35550 | 0.0001 | - |
| 3.0106 | 35600 | 0.0022 | - |
| 3.0148 | 35650 | 0.0001 | - |
| 3.0190 | 35700 | 0.0001 | - |
| 3.0233 | 35750 | 0.0001 | - |
| 3.0275 | 35800 | 0.0 | - |
| 3.0317 | 35850 | 0.0019 | - |
| 3.0359 | 35900 | 0.0 | - |
| 3.0402 | 35950 | 0.0001 | - |
| 3.0444 | 36000 | 0.0001 | - |
| 3.0486 | 36050 | 0.0001 | - |
| 3.0529 | 36100 | 0.0 | - |
| 3.0571 | 36150 | 0.0 | - |
| 3.0613 | 36200 | 0.0001 | - |
| 3.0655 | 36250 | 0.0001 | - |
| 3.0698 | 36300 | 0.0001 | - |
| 3.0740 | 36350 | 0.0001 | - |
| 3.0782 | 36400 | 0.0001 | - |
| 3.0825 | 36450 | 0.0 | - |
| 3.0867 | 36500 | 0.0001 | - |
| 3.0909 | 36550 | 0.0001 | - |
| 3.0951 | 36600 | 0.0001 | - |
| 3.0994 | 36650 | 0.0001 | - |
| 3.1036 | 36700 | 0.0001 | - |
| 3.1078 | 36750 | 0.0 | - |
| 3.1121 | 36800 | 0.0001 | - |
| 3.1163 | 36850 | 0.0001 | - |
| 3.1205 | 36900 | 0.0 | - |
| 3.1247 | 36950 | 0.0001 | - |
| 3.1290 | 37000 | 0.0001 | - |
| 3.1332 | 37050 | 0.0001 | - |
| 3.1374 | 37100 | 0.0001 | - |
| 3.1416 | 37150 | 0.0001 | - |
| 3.1459 | 37200 | 0.0001 | - |
| 3.1501 | 37250 | 0.0001 | - |
| 3.1543 | 37300 | 0.0001 | - |
| 3.1586 | 37350 | 0.0001 | - |
| 3.1628 | 37400 | 0.0055 | - |
| 3.1670 | 37450 | 0.0 | - |
| 3.1712 | 37500 | 0.0001 | - |
| 3.1755 | 37550 | 0.0019 | - |
| 3.1797 | 37600 | 0.0001 | - |
| 3.1839 | 37650 | 0.0001 | - |
| 3.1882 | 37700 | 0.0 | - |
| 3.1924 | 37750 | 0.0 | - |
| 3.1966 | 37800 | 0.0001 | - |
| 3.2008 | 37850 | 0.0001 | - |
| 3.2051 | 37900 | 0.0 | - |
| 3.2093 | 37950 | 0.0001 | - |
| 3.2135 | 38000 | 0.0001 | - |
| 3.2178 | 38050 | 0.0001 | - |
| 3.2220 | 38100 | 0.0 | - |
| 3.2262 | 38150 | 0.0001 | - |
| 3.2304 | 38200 | 0.0 | - |
| 3.2347 | 38250 | 0.0001 | - |
| 3.2389 | 38300 | 0.0001 | - |
| 3.2431 | 38350 | 0.0 | - |
| 3.2474 | 38400 | 0.0001 | - |
| 3.2516 | 38450 | 0.0001 | - |
| 3.2558 | 38500 | 0.0 | - |
| 3.2600 | 38550 | 0.0 | - |
| 3.2643 | 38600 | 0.0 | - |
| 3.2685 | 38650 | 0.0017 | - |
| 3.2727 | 38700 | 0.0095 | - |
| 3.2770 | 38750 | 0.0001 | - |
| 3.2812 | 38800 | 0.0001 | - |
| 3.2854 | 38850 | 0.0 | - |
| 3.2896 | 38900 | 0.0001 | - |
| 3.2939 | 38950 | 0.0 | - |
| 3.2981 | 39000 | 0.0001 | - |
| 3.3023 | 39050 | 0.0 | - |
| 3.3066 | 39100 | 0.0001 | - |
| 3.3108 | 39150 | 0.0 | - |
| 3.3150 | 39200 | 0.0 | - |
| 3.3192 | 39250 | 0.0001 | - |
| 3.3235 | 39300 | 0.0001 | - |
| 3.3277 | 39350 | 0.0 | - |
| 3.3319 | 39400 | 0.0001 | - |
| 3.3362 | 39450 | 0.0001 | - |
| 3.3404 | 39500 | 0.0001 | - |
| 3.3446 | 39550 | 0.0 | - |
| 3.3488 | 39600 | 0.0001 | - |
| 3.3531 | 39650 | 0.0 | - |
| 3.3573 | 39700 | 0.0001 | - |
| 3.3615 | 39750 | 0.0001 | - |
| 3.3658 | 39800 | 0.0022 | - |
| 3.3700 | 39850 | 0.0001 | - |
| 3.3742 | 39900 | 0.0001 | - |
| 3.3784 | 39950 | 0.0 | - |
| 3.3827 | 40000 | 0.0 | - |
| 3.3869 | 40050 | 0.0 | - |
| 3.3911 | 40100 | 0.0001 | - |
| 3.3953 | 40150 | 0.0 | - |
| 3.3996 | 40200 | 0.0 | - |
| 3.4038 | 40250 | 0.0 | - |
| 3.4080 | 40300 | 0.0001 | - |
| 3.4123 | 40350 | 0.0 | - |
| 3.4165 | 40400 | 0.0001 | - |
| 3.4207 | 40450 | 0.0 | - |
| 3.4249 | 40500 | 0.0001 | - |
| 3.4292 | 40550 | 0.0001 | - |
| 3.4334 | 40600 | 0.0001 | - |
| 3.4376 | 40650 | 0.0 | - |
| 3.4419 | 40700 | 0.0001 | - |
| 3.4461 | 40750 | 0.0 | - |
| 3.4503 | 40800 | 0.0 | - |
| 3.4545 | 40850 | 0.0 | - |
| 3.4588 | 40900 | 0.0 | - |
| 3.4630 | 40950 | 0.0001 | - |
| 3.4672 | 41000 | 0.0 | - |
| 3.4715 | 41050 | 0.0 | - |
| 3.4757 | 41100 | 0.0001 | - |
| 3.4799 | 41150 | 0.0016 | - |
| 3.4841 | 41200 | 0.0 | - |
| 3.4884 | 41250 | 0.0001 | - |
| 3.4926 | 41300 | 0.0 | - |
| 3.4968 | 41350 | 0.0001 | - |
| 3.5011 | 41400 | 0.0 | - |
| 3.5053 | 41450 | 0.0 | - |
| 3.5095 | 41500 | 0.0001 | - |
| 3.5137 | 41550 | 0.0 | - |
| 3.5180 | 41600 | 0.0 | - |
| 3.5222 | 41650 | 0.0019 | - |
| 3.5264 | 41700 | 0.0001 | - |
| 3.5307 | 41750 | 0.0001 | - |
| 3.5349 | 41800 | 0.0001 | - |
| 3.5391 | 41850 | 0.0001 | - |
| 3.5433 | 41900 | 0.0023 | - |
| 3.5476 | 41950 | 0.0001 | - |
| 3.5518 | 42000 | 0.0 | - |
| 3.5560 | 42050 | 0.0001 | - |
| 3.5603 | 42100 | 0.0001 | - |
| 3.5645 | 42150 | 0.0 | - |
| 3.5687 | 42200 | 0.0 | - |
| 3.5729 | 42250 | 0.0 | - |
| 3.5772 | 42300 | 0.0 | - |
| 3.5814 | 42350 | 0.0001 | - |
| 3.5856 | 42400 | 0.0 | - |
| 3.5899 | 42450 | 0.0 | - |
| 3.5941 | 42500 | 0.0 | - |
| 3.5983 | 42550 | 0.0 | - |
| 3.6025 | 42600 | 0.0001 | - |
| 3.6068 | 42650 | 0.0 | - |
| 3.6110 | 42700 | 0.0001 | - |
| 3.6152 | 42750 | 0.0001 | - |
| 3.6195 | 42800 | 0.0001 | - |
| 3.6237 | 42850 | 0.0001 | - |
| 3.6279 | 42900 | 0.0001 | - |
| 3.6321 | 42950 | 0.0 | - |
| 3.6364 | 43000 | 0.0 | - |
| 3.6406 | 43050 | 0.0 | - |
| 3.6448 | 43100 | 0.0001 | - |
| 3.6490 | 43150 | 0.0 | - |
| 3.6533 | 43200 | 0.0001 | - |
| 3.6575 | 43250 | 0.0001 | - |
| 3.6617 | 43300 | 0.0001 | - |
| 3.6660 | 43350 | 0.0001 | - |
| 3.6702 | 43400 | 0.0 | - |
| 3.6744 | 43450 | 0.0024 | - |
| 3.6786 | 43500 | 0.0 | - |
| 3.6829 | 43550 | 0.0001 | - |
| 3.6871 | 43600 | 0.002 | - |
| 3.6913 | 43650 | 0.0 | - |
| 3.6956 | 43700 | 0.0 | - |
| 3.6998 | 43750 | 0.0001 | - |
| 3.7040 | 43800 | 0.0001 | - |
| 3.7082 | 43850 | 0.0 | - |
| 3.7125 | 43900 | 0.0 | - |
| 3.7167 | 43950 | 0.0001 | - |
| 3.7209 | 44000 | 0.0 | - |
| 3.7252 | 44050 | 0.0001 | - |
| 3.7294 | 44100 | 0.0 | - |
| 3.7336 | 44150 | 0.0 | - |
| 3.7378 | 44200 | 0.0001 | - |
| 3.7421 | 44250 | 0.0 | - |
| 3.7463 | 44300 | 0.0 | - |
| 3.7505 | 44350 | 0.0001 | - |
| 3.7548 | 44400 | 0.0 | - |
| 3.7590 | 44450 | 0.0 | - |
| 3.7632 | 44500 | 0.0001 | - |
| 3.7674 | 44550 | 0.0 | - |
| 3.7717 | 44600 | 0.0 | - |
| 3.7759 | 44650 | 0.0 | - |
| 3.7801 | 44700 | 0.0022 | - |
| 3.7844 | 44750 | 0.0 | - |
| 3.7886 | 44800 | 0.0001 | - |
| 3.7928 | 44850 | 0.0 | - |
| 3.7970 | 44900 | 0.0001 | - |
| 3.8013 | 44950 | 0.0001 | - |
| 3.8055 | 45000 | 0.0 | - |
| 3.8097 | 45050 | 0.0 | - |
| 3.8140 | 45100 | 0.0 | - |
| 3.8182 | 45150 | 0.0 | - |
| 3.8224 | 45200 | 0.0 | - |
| 3.8266 | 45250 | 0.0 | - |
| 3.8309 | 45300 | 0.0001 | - |
| 3.8351 | 45350 | 0.0 | - |
| 3.8393 | 45400 | 0.0001 | - |
| 3.8436 | 45450 | 0.0001 | - |
| 3.8478 | 45500 | 0.0 | - |
| 3.8520 | 45550 | 0.0001 | - |
| 3.8562 | 45600 | 0.0001 | - |
| 3.8605 | 45650 | 0.0 | - |
| 3.8647 | 45700 | 0.0 | - |
| 3.8689 | 45750 | 0.0 | - |
| 3.8732 | 45800 | 0.0001 | - |
| 3.8774 | 45850 | 0.0015 | - |
| 3.8816 | 45900 | 0.0001 | - |
| 3.8858 | 45950 | 0.0 | - |
| 3.8901 | 46000 | 0.0 | - |
| 3.8943 | 46050 | 0.0001 | - |
| 3.8985 | 46100 | 0.0 | - |
| 3.9027 | 46150 | 0.0 | - |
| 3.9070 | 46200 | 0.0 | - |
| 3.9112 | 46250 | 0.0 | - |
| 3.9154 | 46300 | 0.0 | - |
| 3.9197 | 46350 | 0.0 | - |
| 3.9239 | 46400 | 0.0 | - |
| 3.9281 | 46450 | 0.0 | - |
| 3.9323 | 46500 | 0.0 | - |
| 3.9366 | 46550 | 0.0001 | - |
| 3.9408 | 46600 | 0.0001 | - |
| 3.9450 | 46650 | 0.0001 | - |
| 3.9493 | 46700 | 0.0001 | - |
| 3.9535 | 46750 | 0.0 | - |
| 3.9577 | 46800 | 0.0 | - |
| 3.9619 | 46850 | 0.0 | - |
| 3.9662 | 46900 | 0.0 | - |
| 3.9704 | 46950 | 0.0 | - |
| 3.9746 | 47000 | 0.0 | - |
| 3.9789 | 47050 | 0.0 | - |
| 3.9831 | 47100 | 0.0001 | - |
| 3.9873 | 47150 | 0.0001 | - |
| 3.9915 | 47200 | 0.0021 | - |
| 3.9958 | 47250 | 0.0 | - |
| **4.0** | **47300** | **0.0** | **0.0002** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |