--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - kim2024military metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-MAD results: - task: name: Audio Classification type: audio-classification dataset: name: MAD type: kim2024military config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9344262295081968 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-MAD This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the MAD dataset. It achieves the following results on the evaluation set: - Loss: 1.0444 - Accuracy: 0.9344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2166 | 1.0 | 402 | 0.5008 | 0.8959 | | 0.4771 | 2.0 | 804 | 0.7085 | 0.9257 | | 0.1525 | 3.0 | 1206 | 0.9449 | 0.9373 | | 0.1688 | 4.0 | 1608 | 1.1073 | 0.9219 | | 0.1975 | 5.0 | 2010 | 1.2495 | 0.9209 | | 0.0 | 6.0 | 2412 | 1.0608 | 0.9306 | | 0.0 | 7.0 | 2814 | 1.0338 | 0.9344 | | 0.0 | 8.0 | 3216 | 1.0192 | 0.9373 | | 0.0 | 9.0 | 3618 | 1.0345 | 0.9344 | | 0.0 | 10.0 | 4020 | 1.0444 | 0.9344 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3