Upload 2 files
Browse files- configuration_lordcoder_v0.py +124 -0
- modeling_lordcoder_v0.py +770 -0
configuration_lordcoder_v0.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LoRDCoder configuration class, based on GPT configuration class.
|
2 |
+
|
3 |
+
License: Apache-2.0
|
4 |
+
"""
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
class LoRDCoderConfig(PretrainedConfig):
|
8 |
+
"""
|
9 |
+
This is the configuration class to store the configuration of a [`LoRDCoderModel`]. It is used to instantiate a
|
10 |
+
LoRDCoder model according to the specified arguments, defining the model architecture.
|
11 |
+
|
12 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
13 |
+
documentation from [`PretrainedConfig`] for more information.
|
14 |
+
|
15 |
+
|
16 |
+
Args:
|
17 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
18 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
19 |
+
`inputs_ids` passed when calling [`LoRDCoderModel`].
|
20 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
21 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
22 |
+
just in case (e.g., 512 or 1024 or 2048).
|
23 |
+
n_embd (`int`, *optional*, defaults to 768):
|
24 |
+
Dimensionality of the embeddings and hidden states.
|
25 |
+
n_layer (`int`, *optional*, defaults to 12):
|
26 |
+
Number of hidden layers in the Transformer encoder.
|
27 |
+
n_head (`int`, *optional*, defaults to 12):
|
28 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
29 |
+
n_inner (`int`, *optional*, defaults to None):
|
30 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
31 |
+
activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
32 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
|
33 |
+
"gelu_pytorch_tanh"]`.
|
34 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
35 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
36 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
37 |
+
The dropout ratio for the embeddings.
|
38 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
39 |
+
The dropout ratio for the attention.
|
40 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
41 |
+
The epsilon to use in the layer normalization layers.
|
42 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
43 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
44 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
45 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
46 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
47 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
48 |
+
attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
|
49 |
+
Whether to call the fused softmax in float32.
|
50 |
+
scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
|
51 |
+
Whether to scale the attention softmax in float32.
|
52 |
+
attention_type (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
|
54 |
+
Example:
|
55 |
+
|
56 |
+
```python
|
57 |
+
>>> from transformers import LoRDCoderConfig, LoRDCoderModel
|
58 |
+
|
59 |
+
>>> # Initializing a LoRDCoder configuration
|
60 |
+
>>> configuration = LoRDCoderConfig()
|
61 |
+
|
62 |
+
>>> # Initializing a model (with random weights) from the configuration
|
63 |
+
>>> model = LoRDCoderModel(configuration)
|
64 |
+
|
65 |
+
>>> # Accessing the model configuration
|
66 |
+
>>> configuration = model.config
|
67 |
+
```"""
|
68 |
+
|
69 |
+
model_type = "lordcoder"
|
70 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
71 |
+
attribute_map = {
|
72 |
+
"hidden_size": "n_embd",
|
73 |
+
"max_position_embeddings": "n_positions",
|
74 |
+
"num_attention_heads": "n_head",
|
75 |
+
"num_hidden_layers": "n_layer",
|
76 |
+
}
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
vocab_size=50257,
|
81 |
+
n_positions=1024,
|
82 |
+
n_embd=768,
|
83 |
+
n_layer=12,
|
84 |
+
n_head=12,
|
85 |
+
n_inner=None,
|
86 |
+
activation_function="gelu_pytorch_tanh",
|
87 |
+
resid_pdrop=0.1,
|
88 |
+
embd_pdrop=0.1,
|
89 |
+
attn_pdrop=0.1,
|
90 |
+
layer_norm_epsilon=1e-5,
|
91 |
+
initializer_range=0.02,
|
92 |
+
scale_attn_weights=True,
|
93 |
+
use_cache=True,
|
94 |
+
bos_token_id=50256,
|
95 |
+
eos_token_id=50256,
|
96 |
+
attention_softmax_in_fp32=True,
|
97 |
+
scale_attention_softmax_in_fp32=True,
|
98 |
+
multi_query=True,
|
99 |
+
gate_dim=4096,
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
self.vocab_size = vocab_size
|
103 |
+
self.n_positions = n_positions
|
104 |
+
self.n_embd = n_embd
|
105 |
+
self.n_layer = n_layer
|
106 |
+
self.n_head = n_head
|
107 |
+
self.n_inner = n_inner
|
108 |
+
self.activation_function = activation_function
|
109 |
+
self.resid_pdrop = resid_pdrop
|
110 |
+
self.embd_pdrop = embd_pdrop
|
111 |
+
self.attn_pdrop = attn_pdrop
|
112 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.scale_attn_weights = scale_attn_weights
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
117 |
+
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
118 |
+
self.multi_query = multi_query
|
119 |
+
self.gate_dim = gate_dim
|
120 |
+
|
121 |
+
self.bos_token_id = bos_token_id
|
122 |
+
self.eos_token_id = eos_token_id
|
123 |
+
|
124 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
modeling_lordcoder_v0.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LoRDCoder model class, based on GPT model.
|
2 |
+
|
3 |
+
License: Apache-2.0
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
12 |
+
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.modeling_outputs import (
|
15 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
16 |
+
CausalLMOutputWithCrossAttentions,
|
17 |
+
SequenceClassifierOutputWithPast,
|
18 |
+
TokenClassifierOutput,
|
19 |
+
)
|
20 |
+
from transformers.modeling_utils import PreTrainedModel
|
21 |
+
from .configuration_lordcoder_v0 import LoRDCoderConfig
|
22 |
+
|
23 |
+
|
24 |
+
# Fused kernels
|
25 |
+
# Use separate functions for each case because conditionals prevent kernel fusion.
|
26 |
+
@torch.jit.script
|
27 |
+
def upcast_masked_softmax(
|
28 |
+
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
|
29 |
+
):
|
30 |
+
input_dtype = x.dtype
|
31 |
+
x = x.to(softmax_dtype) * scale
|
32 |
+
x = torch.where(mask, x, mask_value)
|
33 |
+
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
@torch.jit.script
|
38 |
+
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
|
39 |
+
input_dtype = x.dtype
|
40 |
+
x = x.to(softmax_dtype) * scale
|
41 |
+
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
@torch.jit.script
|
46 |
+
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
|
47 |
+
x = torch.where(mask, x, mask_value)
|
48 |
+
x = torch.nn.functional.softmax(x, dim=-1)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
class LoRDCoderAttention(nn.Module):
|
53 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
54 |
+
super().__init__()
|
55 |
+
self.mask_value = None
|
56 |
+
|
57 |
+
self.multi_query = config.multi_query
|
58 |
+
self.embed_dim = config.hidden_size
|
59 |
+
self.num_heads = config.num_attention_heads
|
60 |
+
self.head_dim = self.embed_dim // self.num_heads
|
61 |
+
self.kv_heads = 1 if self.multi_query else self.num_heads
|
62 |
+
self.kv_dim = self.kv_heads * self.head_dim
|
63 |
+
self.split_size = self.embed_dim
|
64 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
65 |
+
raise ValueError(
|
66 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
67 |
+
f" {self.num_heads})."
|
68 |
+
)
|
69 |
+
|
70 |
+
self.scale_attn_weights = config.scale_attn_weights
|
71 |
+
self.is_cross_attention = is_cross_attention
|
72 |
+
|
73 |
+
self.layer_idx = layer_idx
|
74 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
75 |
+
self.scale_attention_softmax_in_fp32 = (
|
76 |
+
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
|
77 |
+
)
|
78 |
+
|
79 |
+
if self.is_cross_attention:
|
80 |
+
raise NotImplementedError("Cross Attention not supported.")
|
81 |
+
if self.multi_query:
|
82 |
+
raise NotImplementedError("Multi-Query Attention not supported for cross_attention")
|
83 |
+
|
84 |
+
self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
|
85 |
+
self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
|
86 |
+
else:
|
87 |
+
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
|
88 |
+
|
89 |
+
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
90 |
+
|
91 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
92 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
93 |
+
|
94 |
+
def _get_mask_value(self, device, dtype):
|
95 |
+
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
|
96 |
+
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
|
97 |
+
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
|
98 |
+
return self.mask_value
|
99 |
+
|
100 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
101 |
+
dtype = query.dtype
|
102 |
+
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
|
103 |
+
upcast = dtype != softmax_dtype
|
104 |
+
|
105 |
+
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
|
106 |
+
scale_factor = unscale**-1
|
107 |
+
if self.scale_attn_weights:
|
108 |
+
scale_factor /= self.head_dim**0.5
|
109 |
+
|
110 |
+
# MQA models: (batch_size, query_length, num_heads * head_dim)
|
111 |
+
# MHA models: (batch_size, num_heads, query_length, head_dim)
|
112 |
+
query_shape = query.shape
|
113 |
+
batch_size = query_shape[0]
|
114 |
+
key_length = key.size(-1)
|
115 |
+
if self.multi_query:
|
116 |
+
# (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
|
117 |
+
# -> (batch_size, query_length, num_heads, key_length)
|
118 |
+
query_length = query_shape[1]
|
119 |
+
attn_shape = (batch_size, query_length, self.num_heads, key_length)
|
120 |
+
attn_view = (batch_size, query_length * self.num_heads, key_length)
|
121 |
+
# No copy needed for MQA 2, or when layer_past is provided.
|
122 |
+
query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
|
123 |
+
else:
|
124 |
+
# (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length)
|
125 |
+
# -> (batch_size, num_heads, query_length, key_length)
|
126 |
+
query_length = query_shape[2]
|
127 |
+
attn_shape = (batch_size, self.num_heads, query_length, key_length)
|
128 |
+
attn_view = (batch_size * self.num_heads, query_length, key_length)
|
129 |
+
# Always copies
|
130 |
+
query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
131 |
+
# No copy when layer_past is provided.
|
132 |
+
key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)
|
133 |
+
|
134 |
+
attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
|
135 |
+
if query.device.type == "cpu":
|
136 |
+
# This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
|
137 |
+
# The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
|
138 |
+
# but the fix has not been released as of pytorch version 2.0.0.
|
139 |
+
attn_weights = torch.zeros_like(attn_weights)
|
140 |
+
beta = 1
|
141 |
+
else:
|
142 |
+
beta = 0
|
143 |
+
attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)
|
144 |
+
|
145 |
+
if upcast:
|
146 |
+
# Use a fused kernel to prevent a large overhead from casting and scaling.
|
147 |
+
# Sub-optimal when the key length is not a multiple of 8.
|
148 |
+
if attention_mask is None:
|
149 |
+
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
|
150 |
+
else:
|
151 |
+
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
152 |
+
# print(attn_weights.device, attention_mask.device, mask_value.device, unscale.device, softmax_dtype)
|
153 |
+
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
|
154 |
+
else:
|
155 |
+
if attention_mask is not None:
|
156 |
+
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
157 |
+
|
158 |
+
# The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
|
159 |
+
attn_weights = torch.where(attention_mask, attn_weights, mask_value)
|
160 |
+
|
161 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
162 |
+
|
163 |
+
attn_weights = self.attn_dropout(attn_weights)
|
164 |
+
|
165 |
+
# Mask heads if we want to
|
166 |
+
if head_mask is not None:
|
167 |
+
if self.multi_query:
|
168 |
+
head_mask = head_mask.transpose(1, 2)
|
169 |
+
attn_weights = attn_weights * head_mask
|
170 |
+
|
171 |
+
if self.multi_query:
|
172 |
+
attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
|
173 |
+
else:
|
174 |
+
attn_output = torch.matmul(attn_weights, value)
|
175 |
+
|
176 |
+
return attn_output, attn_weights
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
hidden_states: torch.Tensor,
|
181 |
+
layer_past: Optional[torch.Tensor] = None,
|
182 |
+
attention_mask: Optional[torch.Tensor] = None,
|
183 |
+
head_mask: Optional[torch.Tensor] = None,
|
184 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
185 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
186 |
+
use_cache: Optional[bool] = False,
|
187 |
+
output_attentions: Optional[bool] = False,
|
188 |
+
) -> Union[
|
189 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
190 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
191 |
+
]:
|
192 |
+
if encoder_hidden_states is not None:
|
193 |
+
if not hasattr(self, "q_attn") or not self.is_cross_attention:
|
194 |
+
raise ValueError(
|
195 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
196 |
+
"Please make sure to instantiate class with `LoRDCoderAttention(..., is_cross_attention=True)`."
|
197 |
+
)
|
198 |
+
|
199 |
+
query = self.q_attn(hidden_states)
|
200 |
+
key_value = self.c_attn(encoder_hidden_states)
|
201 |
+
attention_mask = encoder_attention_mask
|
202 |
+
elif self.multi_query:
|
203 |
+
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
|
204 |
+
else:
|
205 |
+
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
|
206 |
+
# i.e., the memory layout is not the same as GPT2.
|
207 |
+
# This makes the concatenation with past_key_value more efficient.
|
208 |
+
query, key_value = (
|
209 |
+
self.c_attn(hidden_states)
|
210 |
+
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
|
211 |
+
.transpose(1, 2)
|
212 |
+
.split((self.head_dim, 2 * self.head_dim), dim=3)
|
213 |
+
)
|
214 |
+
|
215 |
+
if layer_past is not None:
|
216 |
+
key_value = torch.cat((layer_past, key_value), dim=-2)
|
217 |
+
present = key_value if use_cache else None
|
218 |
+
|
219 |
+
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
|
220 |
+
|
221 |
+
attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
|
222 |
+
|
223 |
+
if not self.multi_query:
|
224 |
+
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
|
225 |
+
attn_output = self.c_proj(attn_output)
|
226 |
+
attn_output = self.resid_dropout(attn_output)
|
227 |
+
|
228 |
+
outputs = (attn_output, present)
|
229 |
+
if output_attentions:
|
230 |
+
if self.multi_query:
|
231 |
+
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
|
232 |
+
attn_weights = attn_weights.transpose(1, 2)
|
233 |
+
outputs += (attn_weights,)
|
234 |
+
|
235 |
+
return outputs # a, present, (attentions)
|
236 |
+
|
237 |
+
|
238 |
+
class LoRDCoderMLP(nn.Module):
|
239 |
+
def __init__(self, intermediate_size, config):
|
240 |
+
super().__init__()
|
241 |
+
embed_dim = config.hidden_size
|
242 |
+
self.gate_dim = config.gate_dim
|
243 |
+
|
244 |
+
self.c_fc = torch.nn.Linear(in_features=embed_dim, out_features=intermediate_size, bias=True)
|
245 |
+
self.c_gate = torch.nn.Linear(in_features=intermediate_size, out_features=self.gate_dim, bias=True)
|
246 |
+
self.c_proj = torch.nn.Linear(in_features=self.gate_dim, out_features=embed_dim, bias=True)
|
247 |
+
|
248 |
+
self.act = ACT2FN[config.activation_function]
|
249 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
250 |
+
|
251 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
252 |
+
hidden_states = self.c_fc(hidden_states)
|
253 |
+
hidden_states = self.c_gate(self.act(hidden_states))
|
254 |
+
hidden_states = self.c_proj(hidden_states)
|
255 |
+
hidden_states = self.dropout(hidden_states)
|
256 |
+
return hidden_states
|
257 |
+
|
258 |
+
|
259 |
+
class LoRDCoderBlock(nn.Module):
|
260 |
+
def __init__(self, config, layer_idx=None):
|
261 |
+
super().__init__()
|
262 |
+
hidden_size = config.hidden_size
|
263 |
+
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
264 |
+
|
265 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
266 |
+
self.attn = LoRDCoderAttention(config, layer_idx=layer_idx)
|
267 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
268 |
+
|
269 |
+
if config.add_cross_attention:
|
270 |
+
if config.multi_query:
|
271 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
272 |
+
self.crossattention = LoRDCoderAttention(config, is_cross_attention=True, layer_idx=layer_idx)
|
273 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
274 |
+
|
275 |
+
self.mlp = LoRDCoderMLP(self.inner_dim, config)
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
hidden_states: Optional[Tuple[torch.Tensor]],
|
280 |
+
layer_past: Optional[torch.Tensor] = None,
|
281 |
+
attention_mask: Optional[torch.Tensor] = None,
|
282 |
+
head_mask: Optional[torch.Tensor] = None,
|
283 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
284 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
285 |
+
use_cache: Optional[bool] = False,
|
286 |
+
output_attentions: Optional[bool] = False,
|
287 |
+
) -> Union[
|
288 |
+
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
|
289 |
+
]:
|
290 |
+
residual = hidden_states
|
291 |
+
hidden_states = self.ln_1(hidden_states)
|
292 |
+
attn_outputs = self.attn(
|
293 |
+
hidden_states,
|
294 |
+
layer_past=layer_past,
|
295 |
+
attention_mask=attention_mask,
|
296 |
+
head_mask=head_mask,
|
297 |
+
use_cache=use_cache,
|
298 |
+
output_attentions=output_attentions,
|
299 |
+
)
|
300 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
301 |
+
outputs = attn_outputs[1:]
|
302 |
+
# residual connection
|
303 |
+
hidden_states = attn_output + residual
|
304 |
+
|
305 |
+
if encoder_hidden_states is not None:
|
306 |
+
# add one self-attention block for cross-attention
|
307 |
+
if not hasattr(self, "crossattention"):
|
308 |
+
raise ValueError(
|
309 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
310 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
311 |
+
)
|
312 |
+
residual = hidden_states
|
313 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
314 |
+
cross_attn_outputs = self.crossattention(
|
315 |
+
hidden_states,
|
316 |
+
attention_mask=attention_mask,
|
317 |
+
head_mask=head_mask,
|
318 |
+
encoder_hidden_states=encoder_hidden_states,
|
319 |
+
encoder_attention_mask=encoder_attention_mask,
|
320 |
+
output_attentions=output_attentions,
|
321 |
+
)
|
322 |
+
attn_output = cross_attn_outputs[0]
|
323 |
+
# residual connection
|
324 |
+
hidden_states = residual + attn_output
|
325 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
326 |
+
|
327 |
+
residual = hidden_states
|
328 |
+
hidden_states = self.ln_2(hidden_states)
|
329 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
330 |
+
# residual connection
|
331 |
+
hidden_states = residual + feed_forward_hidden_states
|
332 |
+
|
333 |
+
if use_cache:
|
334 |
+
outputs = (hidden_states,) + outputs
|
335 |
+
else:
|
336 |
+
outputs = (hidden_states,) + outputs[1:]
|
337 |
+
|
338 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
339 |
+
|
340 |
+
|
341 |
+
class LoRDCoderPreTrainedModel(PreTrainedModel):
|
342 |
+
"""
|
343 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
344 |
+
models.
|
345 |
+
"""
|
346 |
+
|
347 |
+
config_class = LoRDCoderConfig
|
348 |
+
base_model_prefix = "transformer"
|
349 |
+
supports_gradient_checkpointing = True
|
350 |
+
_no_split_modules = ["LoRDCoderBlock"]
|
351 |
+
_skip_keys_device_placement = "past_key_values"
|
352 |
+
|
353 |
+
def __init__(self, *inputs, **kwargs):
|
354 |
+
super().__init__(*inputs, **kwargs)
|
355 |
+
|
356 |
+
def _init_weights(self, module):
|
357 |
+
"""Initialize the weights."""
|
358 |
+
if isinstance(module, LoRDCoderMLP):
|
359 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
360 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
361 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
362 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
363 |
+
#
|
364 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
365 |
+
module.c_proj.weight.data.normal_(
|
366 |
+
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
|
367 |
+
)
|
368 |
+
module.c_proj._is_hf_initialized = True
|
369 |
+
elif isinstance(module, LoRDCoderAttention):
|
370 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
371 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
372 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
373 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
374 |
+
#
|
375 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
376 |
+
module.c_proj.weight.data.normal_(
|
377 |
+
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
|
378 |
+
)
|
379 |
+
module.c_proj.weight.data.normal_(
|
380 |
+
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
|
381 |
+
)
|
382 |
+
module.c_proj._is_hf_initialized = True
|
383 |
+
elif isinstance(module, nn.Linear):
|
384 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
385 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
386 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
387 |
+
if module.bias is not None:
|
388 |
+
module.bias.data.zero_()
|
389 |
+
elif isinstance(module, nn.Embedding):
|
390 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
391 |
+
if module.padding_idx is not None:
|
392 |
+
module.weight.data[module.padding_idx].zero_()
|
393 |
+
elif isinstance(module, nn.LayerNorm):
|
394 |
+
module.bias.data.zero_()
|
395 |
+
module.weight.data.fill_(1.0)
|
396 |
+
|
397 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
398 |
+
if isinstance(module, LoRDCoderModel):
|
399 |
+
module.gradient_checkpointing = value
|
400 |
+
|
401 |
+
|
402 |
+
class LoRDCoderModel(LoRDCoderPreTrainedModel):
|
403 |
+
def __init__(self, config):
|
404 |
+
super().__init__(config)
|
405 |
+
|
406 |
+
self.multi_query = config.multi_query
|
407 |
+
self.embed_dim = config.hidden_size
|
408 |
+
|
409 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
410 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
411 |
+
|
412 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
413 |
+
self.h = nn.ModuleList([LoRDCoderBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
414 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
415 |
+
|
416 |
+
max_positions = config.max_position_embeddings
|
417 |
+
self.register_buffer(
|
418 |
+
"bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
|
419 |
+
)
|
420 |
+
|
421 |
+
self.gradient_checkpointing = False
|
422 |
+
|
423 |
+
# Initialize weights and apply final processing
|
424 |
+
self.post_init()
|
425 |
+
|
426 |
+
def get_input_embeddings(self):
|
427 |
+
return self.wte
|
428 |
+
|
429 |
+
def set_input_embeddings(self, new_embeddings):
|
430 |
+
self.wte = new_embeddings
|
431 |
+
|
432 |
+
def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
|
433 |
+
"""
|
434 |
+
Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
|
435 |
+
"""
|
436 |
+
|
437 |
+
if (attention_mask is not None) or (self.config.pad_token_id is None):
|
438 |
+
return
|
439 |
+
|
440 |
+
# Check only the first and last input IDs to reduce overhead.
|
441 |
+
if self.config.pad_token_id in input_ids[:, [-1, 0]]:
|
442 |
+
warn_string = (
|
443 |
+
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
|
444 |
+
"https://huggingface.co/docs/transformers/troubleshooting"
|
445 |
+
"#incorrect-output-when-padding-tokens-arent-masked."
|
446 |
+
)
|
447 |
+
|
448 |
+
# If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
|
449 |
+
# attention_mask or not. In this case, we should still show a warning because this is a rare case.
|
450 |
+
if (
|
451 |
+
(self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
|
452 |
+
or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
|
453 |
+
or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
|
454 |
+
):
|
455 |
+
warn_string += (
|
456 |
+
f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
|
457 |
+
f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
|
458 |
+
f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
|
459 |
+
)
|
460 |
+
|
461 |
+
print("Warning:", warn_string)
|
462 |
+
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
input_ids: Optional[torch.Tensor] = None,
|
466 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
467 |
+
attention_mask: Optional[torch.Tensor] = None,
|
468 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
469 |
+
position_ids: Optional[torch.Tensor] = None,
|
470 |
+
head_mask: Optional[torch.Tensor] = None,
|
471 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
472 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
473 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
474 |
+
use_cache: Optional[bool] = None,
|
475 |
+
output_attentions: Optional[bool] = None,
|
476 |
+
output_hidden_states: Optional[bool] = None,
|
477 |
+
return_dict: Optional[bool] = None,
|
478 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
479 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
480 |
+
output_hidden_states = (
|
481 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
482 |
+
)
|
483 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
484 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
485 |
+
|
486 |
+
if input_ids is not None and inputs_embeds is not None:
|
487 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
488 |
+
elif input_ids is not None:
|
489 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
490 |
+
input_shape = input_ids.size()
|
491 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
492 |
+
batch_size = input_ids.shape[0]
|
493 |
+
elif inputs_embeds is not None:
|
494 |
+
input_shape = inputs_embeds.size()[:-1]
|
495 |
+
batch_size = inputs_embeds.shape[0]
|
496 |
+
else:
|
497 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
498 |
+
|
499 |
+
if batch_size <= 0:
|
500 |
+
raise ValueError("batch_size has to be defined and > 0")
|
501 |
+
|
502 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
503 |
+
|
504 |
+
if token_type_ids is not None:
|
505 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
506 |
+
if position_ids is not None:
|
507 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
508 |
+
|
509 |
+
if past_key_values is None:
|
510 |
+
past_length = 0
|
511 |
+
past_key_values = tuple([None] * len(self.h))
|
512 |
+
else:
|
513 |
+
past_length = past_key_values[0].size(-2)
|
514 |
+
|
515 |
+
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
|
516 |
+
# create position_ids on the fly for batch generation
|
517 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
518 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
519 |
+
if past_length > 0:
|
520 |
+
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
|
521 |
+
elif position_ids is None:
|
522 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
523 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
524 |
+
|
525 |
+
# Self-attention mask.
|
526 |
+
query_length = input_shape[-1]
|
527 |
+
key_length = past_length + query_length
|
528 |
+
self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
|
529 |
+
|
530 |
+
if attention_mask is not None:
|
531 |
+
self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
|
532 |
+
dtype=torch.bool, device=self_attention_mask.device
|
533 |
+
)
|
534 |
+
|
535 |
+
# MQA models: (batch_size, query_length, n_heads, key_length)
|
536 |
+
# MHA models: (batch_size, n_heads, query_length, key_length)
|
537 |
+
attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1)
|
538 |
+
|
539 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
540 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
541 |
+
if (
|
542 |
+
self.config.add_cross_attention
|
543 |
+
and encoder_hidden_states is not None
|
544 |
+
and encoder_attention_mask is not None
|
545 |
+
):
|
546 |
+
if encoder_attention_mask.dim() == 2:
|
547 |
+
encoder_attention_mask.unsqueeze(1)
|
548 |
+
assert encoder_attention_mask.dim() == 3
|
549 |
+
encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1)
|
550 |
+
else:
|
551 |
+
encoder_attention_mask = None
|
552 |
+
|
553 |
+
# Prepare head mask if needed
|
554 |
+
# 1.0 in head_mask indicate we keep the head
|
555 |
+
# attention_probs has shape bsz x n_heads x N x N
|
556 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
557 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
558 |
+
|
559 |
+
if inputs_embeds is None:
|
560 |
+
inputs_embeds = self.wte(input_ids)
|
561 |
+
position_embeds = self.wpe(position_ids)
|
562 |
+
hidden_states = inputs_embeds + position_embeds
|
563 |
+
|
564 |
+
if token_type_ids is not None:
|
565 |
+
token_type_embeds = self.wte(token_type_ids)
|
566 |
+
hidden_states = hidden_states + token_type_embeds
|
567 |
+
|
568 |
+
hidden_states = self.drop(hidden_states)
|
569 |
+
|
570 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
571 |
+
|
572 |
+
presents = [] if use_cache else None
|
573 |
+
all_self_attentions = () if output_attentions else None
|
574 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
575 |
+
all_hidden_states = () if output_hidden_states else None
|
576 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
577 |
+
if output_hidden_states:
|
578 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
579 |
+
|
580 |
+
if self.gradient_checkpointing and self.training:
|
581 |
+
|
582 |
+
def create_custom_forward(module):
|
583 |
+
def custom_forward(*inputs):
|
584 |
+
# None for past_key_value
|
585 |
+
return module(*inputs, use_cache, output_attentions)
|
586 |
+
|
587 |
+
return custom_forward
|
588 |
+
|
589 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
590 |
+
create_custom_forward(block),
|
591 |
+
hidden_states,
|
592 |
+
None,
|
593 |
+
attention_mask,
|
594 |
+
head_mask[i],
|
595 |
+
encoder_hidden_states,
|
596 |
+
encoder_attention_mask,
|
597 |
+
)
|
598 |
+
else:
|
599 |
+
outputs = block(
|
600 |
+
hidden_states,
|
601 |
+
layer_past=layer_past,
|
602 |
+
attention_mask=attention_mask,
|
603 |
+
head_mask=head_mask[i],
|
604 |
+
encoder_hidden_states=encoder_hidden_states,
|
605 |
+
encoder_attention_mask=encoder_attention_mask,
|
606 |
+
use_cache=use_cache,
|
607 |
+
output_attentions=output_attentions,
|
608 |
+
)
|
609 |
+
|
610 |
+
hidden_states = outputs[0]
|
611 |
+
if use_cache:
|
612 |
+
presents.append(outputs[1])
|
613 |
+
|
614 |
+
if output_attentions:
|
615 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
616 |
+
if self.config.add_cross_attention:
|
617 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
618 |
+
|
619 |
+
hidden_states = self.ln_f(hidden_states)
|
620 |
+
|
621 |
+
hidden_states = hidden_states.view(output_shape)
|
622 |
+
# Add last hidden state
|
623 |
+
if output_hidden_states:
|
624 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
return tuple(
|
628 |
+
v
|
629 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
630 |
+
if v is not None
|
631 |
+
)
|
632 |
+
|
633 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
634 |
+
last_hidden_state=hidden_states,
|
635 |
+
past_key_values=presents,
|
636 |
+
hidden_states=all_hidden_states,
|
637 |
+
attentions=all_self_attentions,
|
638 |
+
cross_attentions=all_cross_attentions,
|
639 |
+
)
|
640 |
+
|
641 |
+
|
642 |
+
class LoRDCoderForCausalLM(LoRDCoderPreTrainedModel):
|
643 |
+
|
644 |
+
def __init__(self, config):
|
645 |
+
super().__init__(config)
|
646 |
+
self.transformer = LoRDCoderModel(config)
|
647 |
+
self.lm_head = lambda x: torch.matmul(x, self.transformer.wte.weight.T)
|
648 |
+
|
649 |
+
# Initialize weights and apply final processing
|
650 |
+
self.post_init()
|
651 |
+
|
652 |
+
def get_output_embeddings(self):
|
653 |
+
return self.lm_head
|
654 |
+
|
655 |
+
def set_output_embeddings(self, new_embeddings):
|
656 |
+
raise NotImplementedError("Cannot resize the embeddings of LoRDCoderForCausalLM.")
|
657 |
+
|
658 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
659 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
660 |
+
# only last token for inputs_ids if past is defined in kwargs
|
661 |
+
if past_key_values:
|
662 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
663 |
+
if token_type_ids is not None:
|
664 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
665 |
+
|
666 |
+
attention_mask = kwargs.get("attention_mask", None)
|
667 |
+
position_ids = kwargs.get("position_ids", None)
|
668 |
+
|
669 |
+
if attention_mask is not None and position_ids is None:
|
670 |
+
# create position_ids on the fly for batch generation
|
671 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
672 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
673 |
+
if past_key_values:
|
674 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
675 |
+
else:
|
676 |
+
position_ids = None
|
677 |
+
|
678 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
679 |
+
if inputs_embeds is not None and past_key_values is None:
|
680 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
681 |
+
else:
|
682 |
+
model_inputs = {"input_ids": input_ids}
|
683 |
+
|
684 |
+
model_inputs.update(
|
685 |
+
{
|
686 |
+
"past_key_values": past_key_values,
|
687 |
+
"use_cache": kwargs.get("use_cache"),
|
688 |
+
"position_ids": position_ids,
|
689 |
+
"attention_mask": attention_mask,
|
690 |
+
"token_type_ids": token_type_ids,
|
691 |
+
}
|
692 |
+
)
|
693 |
+
return model_inputs
|
694 |
+
|
695 |
+
def forward(
|
696 |
+
self,
|
697 |
+
input_ids: Optional[torch.Tensor] = None,
|
698 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
699 |
+
attention_mask: Optional[torch.Tensor] = None,
|
700 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
701 |
+
position_ids: Optional[torch.Tensor] = None,
|
702 |
+
head_mask: Optional[torch.Tensor] = None,
|
703 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
704 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
705 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
706 |
+
labels: Optional[torch.Tensor] = None,
|
707 |
+
use_cache: Optional[bool] = None,
|
708 |
+
output_attentions: Optional[bool] = None,
|
709 |
+
output_hidden_states: Optional[bool] = None,
|
710 |
+
return_dict: Optional[bool] = None,
|
711 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
712 |
+
r"""
|
713 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
714 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
715 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
716 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
717 |
+
"""
|
718 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
719 |
+
|
720 |
+
transformer_outputs = self.transformer(
|
721 |
+
input_ids,
|
722 |
+
past_key_values=past_key_values,
|
723 |
+
attention_mask=attention_mask,
|
724 |
+
token_type_ids=token_type_ids,
|
725 |
+
position_ids=position_ids,
|
726 |
+
head_mask=head_mask,
|
727 |
+
inputs_embeds=inputs_embeds,
|
728 |
+
encoder_hidden_states=encoder_hidden_states,
|
729 |
+
encoder_attention_mask=encoder_attention_mask,
|
730 |
+
use_cache=use_cache,
|
731 |
+
output_attentions=output_attentions,
|
732 |
+
output_hidden_states=output_hidden_states,
|
733 |
+
return_dict=return_dict,
|
734 |
+
)
|
735 |
+
hidden_states = transformer_outputs[0]
|
736 |
+
|
737 |
+
lm_logits = self.lm_head(hidden_states)
|
738 |
+
|
739 |
+
loss = None
|
740 |
+
if labels is not None:
|
741 |
+
# Shift so that tokens < n predict n
|
742 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
743 |
+
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
|
744 |
+
# Flatten the tokens
|
745 |
+
loss_fct = CrossEntropyLoss()
|
746 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
747 |
+
|
748 |
+
if not return_dict:
|
749 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
750 |
+
return ((loss,) + output) if loss is not None else output
|
751 |
+
|
752 |
+
return CausalLMOutputWithCrossAttentions(
|
753 |
+
loss=loss,
|
754 |
+
logits=lm_logits,
|
755 |
+
past_key_values=transformer_outputs.past_key_values,
|
756 |
+
hidden_states=transformer_outputs.hidden_states,
|
757 |
+
attentions=transformer_outputs.attentions,
|
758 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
759 |
+
)
|
760 |
+
|
761 |
+
@staticmethod
|
762 |
+
def _reorder_cache(
|
763 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
764 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
765 |
+
"""
|
766 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
767 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
768 |
+
beam_idx at every generation step.
|
769 |
+
"""
|
770 |
+
return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
|