|
''' |
|
* Copyright (c) 2022, salesforce.com, inc. |
|
* All rights reserved. |
|
* SPDX-License-Identifier: BSD-3-Clause |
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
* By Junnan Li |
|
''' |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
from models.vit import VisionTransformer, interpolate_pos_embed |
|
from models.med import BertConfig, BertModel, BertLMHeadModel |
|
from transformers import BertTokenizer |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
import os |
|
from urllib.parse import urlparse |
|
from timm.models.hub import download_cached_file |
|
|
|
class BLIP_Base(nn.Module): |
|
def __init__(self, |
|
med_config = 'configs/med_config.json', |
|
image_size = 224, |
|
vit = 'base', |
|
vit_grad_ckpt = False, |
|
vit_ckpt_layer = 0, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|
|
|
|
|
def forward(self, image, caption, mode): |
|
|
|
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal" |
|
text = self.tokenizer(caption, return_tensors="pt").to(image.device) |
|
|
|
if mode=='image': |
|
|
|
image_embeds = self.visual_encoder(image) |
|
return image_embeds |
|
|
|
elif mode=='text': |
|
|
|
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, |
|
return_dict = True, mode = 'text') |
|
return text_output.last_hidden_state |
|
|
|
elif mode=='multimodal': |
|
|
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|
|
|
text.input_ids[:,0] = self.tokenizer.enc_token_id |
|
output = self.text_encoder(text.input_ids, |
|
attention_mask = text.attention_mask, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = True, |
|
) |
|
return output.last_hidden_state |
|
|
|
|
|
def blip_feature_extractor(pretrained='',**kwargs): |
|
model = BLIP_Base(**kwargs) |
|
if pretrained: |
|
model,msg = load_checkpoint(model,pretrained) |
|
assert(len(msg.missing_keys)==0) |
|
return model |
|
|
|
def init_tokenizer(): |
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) |
|
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) |
|
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] |
|
return tokenizer |
|
|
|
|
|
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): |
|
|
|
assert vit in ['base', 'large'], "vit parameter must be base or large" |
|
if vit=='base': |
|
vision_width = 768 |
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, |
|
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|
drop_path_rate=0 or drop_path_rate |
|
) |
|
elif vit=='large': |
|
vision_width = 1024 |
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, |
|
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|
drop_path_rate=0.1 or drop_path_rate |
|
) |
|
return visual_encoder, vision_width |
|
|
|
def is_url(url_or_filename): |
|
parsed = urlparse(url_or_filename) |
|
return parsed.scheme in ("http", "https") |
|
|
|
def load_checkpoint(model,url_or_filename): |
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) |
|
checkpoint = torch.load(cached_file, map_location='cpu') |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location='cpu') |
|
else: |
|
raise RuntimeError('checkpoint url or path is invalid') |
|
|
|
state_dict = checkpoint['model'] |
|
|
|
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) |
|
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): |
|
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], |
|
model.visual_encoder_m) |
|
for key in model.state_dict().keys(): |
|
if key in state_dict.keys(): |
|
if state_dict[key].shape!=model.state_dict()[key].shape: |
|
del state_dict[key] |
|
|
|
msg = model.load_state_dict(state_dict,strict=False) |
|
print('load checkpoint from %s'%url_or_filename) |
|
return model,msg |
|
|