Fill-Mask
Transformers
PyTorch
Safetensors
English
nomic_bert
custom_code
File size: 85,730 Bytes
3e386a9
 
 
 
 
cbca4e2
cbfed57
 
3e386a9
7680a1c
3e386a9
cbfed57
 
3e386a9
cbfed57
3e386a9
cbca4e2
3e386a9
 
 
 
cbfed57
cbca4e2
 
 
3e386a9
 
e75bfa2
cbfed57
e119b48
cbfed57
e119b48
 
 
3e386a9
cbca4e2
 
 
 
 
3e386a9
 
cbfed57
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
e119b48
cbfed57
e119b48
 
cbfed57
e119b48
 
 
 
 
 
 
 
1fe3d3f
 
cbca4e2
e119b48
1fe3d3f
 
 
 
 
e119b48
 
 
 
 
 
 
 
 
 
 
 
cbfed57
e119b48
 
 
 
 
 
 
 
 
 
 
cbfed57
e119b48
 
 
 
 
 
 
 
 
 
 
cbfed57
7cd983f
 
 
 
 
 
 
e119b48
 
 
cbfed57
e119b48
 
 
 
 
 
 
cbfed57
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
cbfed57
 
 
 
 
 
 
 
fcebeef
 
 
e119b48
 
 
 
 
 
 
fcebeef
 
 
 
e119b48
fcebeef
 
 
 
 
 
 
 
e119b48
 
cbfed57
 
 
 
e119b48
 
 
 
cbfed57
e119b48
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
cbca4e2
7680a1c
 
cbca4e2
 
 
 
 
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
cbca4e2
 
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e386a9
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd983f
3e386a9
13e12b1
fcebeef
7cd983f
4bb68f6
5c0d092
 
 
fcebeef
 
13e12b1
 
fcebeef
 
 
 
5c0d092
 
 
 
b672c72
 
 
3e386a9
 
 
 
cbfed57
 
 
 
 
 
 
 
 
3e386a9
 
 
 
 
b672c72
cbfed57
 
 
 
 
 
 
3e386a9
 
 
7cd983f
13e12b1
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
cbca4e2
 
 
 
 
 
 
 
 
 
 
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
 
 
 
 
 
 
 
 
 
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
cbca4e2
 
 
 
7680a1c
 
cbca4e2
7680a1c
 
cbca4e2
7680a1c
cbca4e2
 
 
 
7680a1c
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
cbca4e2
7680a1c
 
 
 
 
 
cbca4e2
7680a1c
 
cbca4e2
7680a1c
 
 
 
 
 
 
cbca4e2
 
 
 
 
 
 
 
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
 
 
7680a1c
 
 
 
 
cbca4e2
 
 
 
 
7680a1c
 
 
 
 
 
 
 
 
cbca4e2
 
 
 
 
7680a1c
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
cbfed57
3e386a9
cbfed57
3e386a9
 
 
 
 
cbfed57
fcebeef
3e386a9
fcebeef
3e386a9
cbfed57
 
3e386a9
 
 
 
a971780
3e386a9
 
 
 
 
 
a971780
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
7680a1c
3e386a9
 
 
cbfed57
7680a1c
3e386a9
 
 
 
 
 
7680a1c
3e386a9
 
 
 
 
 
 
 
7680a1c
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
 
 
3e386a9
 
 
 
 
 
 
 
 
fcebeef
 
 
 
 
 
 
 
 
cbfed57
fcebeef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
fcebeef
 
 
 
 
 
 
3e386a9
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f627bd
fcebeef
 
 
 
 
 
cbfed57
 
fcebeef
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
7680a1c
3e386a9
 
 
 
 
 
 
 
 
 
 
 
7680a1c
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7680a1c
 
cbca4e2
 
 
 
 
 
7680a1c
 
 
3e386a9
 
 
 
 
 
cbca4e2
 
 
 
 
 
 
 
3e386a9
cbca4e2
 
3e386a9
cbca4e2
3e386a9
 
 
 
 
 
cbfed57
3e386a9
4585c36
3e386a9
 
 
 
4585c36
3e386a9
 
cbfed57
 
3e386a9
cbfed57
 
 
3e386a9
 
cbfed57
 
 
 
 
 
 
7680a1c
cbfed57
3e386a9
cbfed57
 
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7680a1c
3e386a9
 
7cd983f
3e386a9
 
 
 
 
 
 
 
 
 
 
cbfed57
 
 
 
 
 
7680a1c
cbfed57
3e386a9
 
 
 
 
 
 
 
 
cbfed57
 
 
 
 
 
7680a1c
3e386a9
cbfed57
3e386a9
 
cbfed57
3e386a9
 
 
 
 
 
cbfed57
3e386a9
 
 
cbfed57
 
3e386a9
 
 
 
 
 
 
 
 
cbfed57
7680a1c
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7680a1c
 
 
 
 
3e386a9
 
7680a1c
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7680a1c
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfed57
 
 
 
 
 
 
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
53c3a30
5c0d092
b9c36f5
0f627bd
cbfed57
0f627bd
a971780
3e386a9
a971780
 
3e386a9
 
a971780
 
 
 
 
 
3e386a9
 
 
 
cbfed57
3e386a9
 
 
0f627bd
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd983f
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75bfa2
3e386a9
e75bfa2
 
cbfed57
3e386a9
 
cbfed57
3e386a9
 
 
 
 
 
 
cbfed57
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd983f
7680a1c
cbca4e2
7680a1c
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
cbca4e2
7680a1c
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
 
 
7680a1c
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
 
 
 
 
 
 
cbca4e2
 
 
7680a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbca4e2
7680a1c
 
 
 
cbca4e2
 
 
7680a1c
 
 
cbca4e2
7680a1c
 
 
 
 
 
cbca4e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py

import collections
import logging

# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import math
import os
import re
from collections import OrderedDict
from functools import partial
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from safetensors.torch import load_file as safe_load_file
from torch.nn.modules.utils import _pair
from transformers import GPT2Config, PreTrainedModel, ViTConfig, ViTModel
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.bert.modeling_bert import (
    BaseModelOutputWithPoolingAndCrossAttentions,
    MaskedLMOutput,
    SequenceClassifierOutput,
)
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import cached_file, get_checkpoint_shard_files

from .configuration_hf_nomic_bert import NomicBertConfig

try:
    from torch.nn.functional import scaled_dot_product_attention
except ImportError:
    scaled_dot_product_attention = None

logger = logging.getLogger(__name__)


# adapted from flash attention, added safe serialization option for hf models
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
    # If not fp32, then we don't want to load directly to the GPU
    mapped_device = "cpu" if dtype not in [torch.float32, None] else device
    is_sharded = False
    load_safe = False
    resolved_archive_file = None

    weights_path = os.path.join(model_name, WEIGHTS_NAME)
    weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
    safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
    safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)

    if os.path.isfile(weights_path):
        resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
    elif os.path.isfile(weights_index_path):
        resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
        is_sharded = True
    elif os.path.isfile(safe_weights_path):
        resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
        load_safe = True
    elif os.path.isfile(safe_weights_index_path):
        resolved_archive_file = cached_file(
            model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
        )
        is_sharded = True
        load_safe = True
    else:  # Try loading from HF hub instead of from local files
        resolved_archive_file = None
        for weight_name in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
            resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
            if resolved_archive_file is not None:
                if weight_name in [SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]:
                    load_safe = True
                if weight_name in [WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
                    is_sharded = True
                break

    if resolved_archive_file is None:
        raise EnvironmentError(f"Model name {model_name} was not found.")

    if load_safe:
        loader = partial(safe_load_file, device=mapped_device)
    else:
        loader = partial(torch.load, map_location=mapped_device)

    if is_sharded:
        # resolved_archive_file becomes a list of files that point to the different
        # checkpoint shards in this case.
        resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
        state_dict = {}
        for sharded_file in resolved_archive_file:
            state_dict.update(loader(sharded_file))
    else:
        state_dict = loader(resolved_archive_file)
    # Convert dtype before moving to GPU to save memory
    if dtype is not None:
        state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
    state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
    return state_dict


def filter_shapes(state_dict, model):
    """
    Filters the state dict to match the current model shape.
    """
    filtered_state_dict = {}
    for key, value in state_dict.items():
        if key in model.state_dict():
            if value.shape == model.state_dict()[key].shape:
                filtered_state_dict[key] = value
    return filtered_state_dict


def remap_bert_state_dict(
    state_dict,
    config,
    remove_bert=False,
    remove_cls_weights=False,
    add_pooling_layer=False,
):
    """
    Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
    """

    def add_bert_prefix(key):
        # prepend bert. to the key
        if key.startswith("bert.") or key.startswith("cls."):
            return key
        return f"bert.{key}"

    state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln_gamma_beta(key):
        key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
        key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
        return key

    state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())

    # Layers
    def key_mapping_layers(key):
        return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)

    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
        key = re.sub(
            r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
            r"bert.encoder.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
            r"bert.encoder.layers.\1.norm2.\2",
            key,
        )
        key = re.sub(
            r"^cls.predictions.transform.LayerNorm.(weight|bias)",
            r"cls.predictions.transform.layer_norm.\1",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
        key = re.sub(
            r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mlp.fc2.\2",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    last_layer_subset = getattr(config, "last_layer_subset", False)
    for d in range(config.num_hidden_layers):
        if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
            continue
        Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
        Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
        Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
        bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
        bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
        bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
        if not (last_layer_subset and d == config.num_hidden_layers - 1):
            state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
            state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
        else:
            state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
            state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
            state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
            state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)

    def key_mapping_attn(key):
        return re.sub(
            r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
            r"bert.encoder.layers.\1.attn.out_proj.\2",
            key,
        )

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    def key_mapping_decoder_bias(key):
        return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)

    # remove nsp weights, we don't use
    state_dict.pop("cls.seq_relationship.weight", None)
    state_dict.pop("cls.seq_relationship.bias", None)
    state_dict.pop("bert.embeddings.position_ids", None)

    state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())

    if remove_cls_weights:
        cls_weights = [
            "cls.predictions.decoder.bias",
            "cls.predictions.transform.dense.weight",
            "cls.predictions.transform.dense.bias",
            "cls.predictions.transform.layer_norm.weight",
            "cls.predictions.transform.layer_norm.bias",
            "cls.predictions.decoder.weight",
        ]
        for weight in cls_weights:
            state_dict.pop(weight, None)

    # Word embedding
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    if pad_vocab_size_multiple > 1:
        word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
        state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
            word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
        )
        if not remove_cls_weights:
            decoder_weight = state_dict["cls.predictions.decoder.weight"]
            state_dict["cls.predictions.decoder.weight"] = F.pad(
                decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
            )
            # If the vocab was padded, we want to set the decoder bias for those padded indices to be
            # strongly negative (i.e. the decoder shouldn't predict those indices).
            # TD [2022-05-09]: I don't think it affects the MLPerf training.
            if "cls.predictions.decoder.bias" in state_dict:
                decoder_bias = state_dict["cls.predictions.decoder.bias"]
                state_dict["cls.predictions.decoder.bias"] = F.pad(
                    decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
                )

    if add_pooling_layer is False:
        pooler_weights = [
            "bert.pooler.dense.weight",
            "bert.pooler.dense.bias",
        ]
        for key in pooler_weights:
            state_dict.pop(key, None)

    if remove_bert:

        def remove_bert_prefix(key):
            key = re.sub(r"^bert.", "", key)
            return key

        state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())

    return state_dict


def _trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        print(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    # Values are generated by using a truncated uniform distribution and
    # then using the inverse CDF for the normal distribution.
    # Get upper and lower cdf values
    l = norm_cdf((a - mean) / std)
    u = norm_cdf((b - mean) / std)

    # Uniformly fill tensor with values from [l, u], then translate to
    # [2l-1, 2u-1].
    tensor.uniform_(2 * l - 1, 2 * u - 1)

    # Use inverse cdf transform for normal distribution to get truncated
    # standard normal
    tensor.erfinv_()

    # Transform to proper mean, std
    tensor.mul_(std * math.sqrt(2.0))
    tensor.add_(mean)

    # Clamp to ensure it's in the proper range
    tensor.clamp_(min=a, max=b)
    return tensor


def trunc_normal_tf_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.

    NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
    bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
    and the result is subsquently scaled and shifted by the mean and std args.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    with torch.no_grad():
        _trunc_normal_(tensor, 0, 1.0, a, b)
        tensor.mul_(std).add_(mean)
    return tensor


class NomicBertPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
    """

    config_class = NomicBertConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Block"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config)
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                )
            )
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
        """
        Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            *inputs, **kwargs: additional input for the specific NomicBert class
                (ex: num_labels for NomicBertForSequenceClassification)
        """
        # Instantiate model.
        if config is None:
            config = cls.config_class.from_pretrained(model_name)
        remove_cls = cls != NomicBertForPreTraining
        remove_bert_prefix = cls != NomicBertForPreTraining and cls != NomicBertForSequenceClassification
        ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
        num_labels = kwargs.pop("num_labels", None)
        rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
        strict = kwargs.pop("strict", True)
        dtype = kwargs.pop("torch_dtype", None)
        if rotary_scaling_factor:
            config.rotary_scaling_factor = rotary_scaling_factor

        if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
            config.n_positions = 2048
        if num_labels:
            config.num_labels = num_labels

        if "add_pooling_layer" in kwargs:
            model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
        else:
            if cls == NomicBertModel:
                model = cls(config, *inputs, add_pooling_layer=False)
            else:
                model = cls(config, *inputs)

        if dtype is not None:
            model = model.to(dtype=dtype)
        # TODO: fix this
        # Assuming we know what we're doing when loading from disk
        # Prob a bad assumption but i'm tired and want to train this asap
        if os.path.exists(model_name):
            model_path = f"{model_name}/pytorch_model.bin"
            if os.path.exists(model_path):
                state_dict = torch.load(f"{model_name}/pytorch_model.bin")
            else:
                model_path = f"{model_name}/model.safetensors"
                if not os.path.exists(model_path):
                    raise ValueError(f"Model path {model_path} not found")
                state_dict = safe_load_file(model_path)

            if ignore_mismatched_shapes:
                state_dict = filter_shapes(state_dict, model)
            load_return = model.load_state_dict(state_dict, strict=False)
        else:
            # TODO: can probably check config class and see if we need to remap from a bert model
            state_dict = state_dict_from_pretrained(model_name, dtype=dtype)
            state_dict = remap_bert_state_dict(
                state_dict,
                config,
                remove_bert=remove_bert_prefix,
                remove_cls_weights=remove_cls,
                add_pooling_layer=getattr(config, "add_pooling_layer", False),
            )
            if ignore_mismatched_shapes:
                state_dict = filter_shapes(state_dict, model)

            load_return = model.load_state_dict(state_dict, strict=strict)
        logger.warning(load_return)
        return model

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, NomicBertEncoder):
            module.gradient_checkpointing = value


# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.padding_idx is not None:
            nn.init.zeros_(module.weight[module.padding_idx])


def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))

    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple


def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
    """
    Create 2D sin/cos positional embeddings.

    Args:
        embed_dim (`int`):
            Embedding dimension.
        grid_size (`int`):
            The grid height and width.
        add_cls_token (`bool`, *optional*, defaults to `False`):
            Whether or not to add a classification (CLS) token.

    Returns:
        (`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
        position embeddings (with or without classification token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)

    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if add_cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be even")

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be even")

    omega = np.arange(embed_dim // 2, dtype=float)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]:
    """generate N-D grid in dimension order.

    The ndgrid function is like meshgrid except that the order of the first two input arguments are switched.

    That is, the statement
    [X1,X2,X3] = ndgrid(x1,x2,x3)

    produces the same result as

    [X2,X1,X3] = meshgrid(x2,x1,x3)

    This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make
    torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy').

    """
    try:
        return torch.meshgrid(*tensors, indexing='ij')
    except TypeError:
        # old PyTorch < 1.10 will follow this path as it does not have indexing arg,
        # the old behaviour of meshgrid was 'ij'
        return torch.meshgrid(*tensors)


def build_fourier_pos_embed(
    feat_shape: List[int],
    bands: Optional[torch.Tensor] = None,
    num_bands: int = 64,
    max_res: int = 224,
    temperature: float = 10000.0,
    linear_bands: bool = False,
    include_grid: bool = False,
    in_pixels: bool = True,
    ref_feat_shape: Optional[List[int]] = None,
    dtype: torch.dtype = torch.float32,
    device: Optional[torch.device] = None,
) -> List[torch.Tensor]:
    """

    Args:
        feat_shape: Feature shape for embedding.
        bands: Pre-calculated frequency bands.
        num_bands: Number of frequency bands (determines output dim).
        max_res: Maximum resolution for pixel based freq.
        temperature: Temperature for non-pixel freq.
        linear_bands: Linear band spacing for pixel based freq.
        include_grid: Include the spatial grid in output.
        in_pixels: Output in pixel freq.
        ref_feat_shape: Reference feature shape for resize / fine-tune.
        dtype: Output dtype.
        device: Output device.

    Returns:

    """
    if bands is None:
        if in_pixels:
            bands = pixel_freq_bands(
                num_bands,
                float(max_res),
                linear_bands=linear_bands,
                device=device,
            )
        else:
            bands = freq_bands(
                num_bands,
                temperature=temperature,
                step=1,
                device=device,
            )
    else:
        if device is None:
            device = bands.device
        if dtype is None:
            dtype = bands.dtype

    if in_pixels:
        t = [torch.linspace(-1.0, 1.0, steps=s, device=device, dtype=torch.float32) for s in feat_shape]
    else:
        t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape]

    if ref_feat_shape is not None:
        # eva's scheme for resizing rope embeddings (ref shape = pretrain)
        t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]

    grid = torch.stack(ndgrid(t), dim=-1)
    grid = grid.unsqueeze(-1)
    pos = grid * bands

    pos_sin, pos_cos = pos.sin().to(dtype=dtype), pos.cos().to(dtype)
    out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
    return out


def build_rotary_pos_embed(
    feat_shape: List[int],
    bands: Optional[torch.Tensor] = None,
    dim: int = 64,
    max_res: int = 224,
    temperature: float = 10000.0,
    linear_bands: bool = False,
    in_pixels: bool = True,
    ref_feat_shape: Optional[List[int]] = None,
    dtype: torch.dtype = torch.float32,
    device: Optional[torch.device] = None,
):
    """

    Args:
        feat_shape: Spatial shape of the target tensor for embedding.
        bands: Optional pre-generated frequency bands
        dim: Output dimension of embedding tensor.
        max_res: Maximum resolution for pixel mode.
        temperature: Temperature (inv freq) for non-pixel mode
        linear_bands: Linearly (instead of log) spaced bands for pixel mode
        in_pixels: Pixel vs language (inv freq) mode.
        dtype: Output dtype.
        device: Output device.

    Returns:

    """
    sin_emb, cos_emb = build_fourier_pos_embed(
        feat_shape,
        bands=bands,
        num_bands=dim // 4,
        max_res=max_res,
        temperature=temperature,
        linear_bands=linear_bands,
        in_pixels=in_pixels,
        ref_feat_shape=ref_feat_shape,
        device=device,
        dtype=dtype,
    )
    num_spatial_dim = 1
    # this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
    for x in feat_shape:
        num_spatial_dim *= x
    sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
    cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
    return sin_emb, cos_emb


def freq_bands(
    num_bands: int,
    temperature: float = 10000.0,
    step: int = 2,
    device: Optional[torch.device] = None,
) -> torch.Tensor:
    exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands
    bands = 1.0 / (temperature**exp)
    return bands


def pixel_freq_bands(
    num_bands: int,
    max_freq: float = 224.0,
    linear_bands: bool = True,
    device: Optional[torch.device] = None,
):
    if linear_bands:
        bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device)
    else:
        bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device)
    return bands * torch.pi


def rot(x):
    return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)


def apply_rot_embed_cat(x: torch.Tensor, emb):
    sin_emb, cos_emb = emb.tensor_split(2, -1)
    if sin_emb.ndim == 3:
        return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
    return x * cos_emb + rot(x) * sin_emb


# taken from https://github.com/huggingface/pytorch-image-models/blob/cb0e4391beedcc5ac3ae4bce16561b95c326f32c/timm/layers/pos_embed_sincos.py#L363
class NomicVisionRotaryEmbeddingCat(nn.Module):
    """Rotary position embedding w/ concatenatd sin & cos

    The following impl/resources were referenced for this impl:
    * https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
    * https://blog.eleuther.ai/rotary-embeddings/
    """

    def __init__(
        self,
        dim,
        max_res=224,
        temperature=10000,
        in_pixels=True,
        linear_bands: bool = False,
        feat_shape: Optional[List[int]] = None,
        ref_feat_shape: Optional[List[int]] = None,
    ):
        super().__init__()
        self.dim = dim
        self.max_res = max_res
        self.temperature = temperature
        self.in_pixels = in_pixels
        self.feat_shape = feat_shape
        self.ref_feat_shape = ref_feat_shape

        if feat_shape is None:
            # only cache bands
            if in_pixels:
                bands = pixel_freq_bands(
                    dim // 4,
                    float(max_res),
                    linear_bands=linear_bands,
                )
            else:
                bands = freq_bands(
                    dim // 4,
                    temperature=temperature,
                    step=1,
                )
            self.register_buffer(
                'bands',
                bands,
                persistent=False,
            )
            self.pos_embed = None
        else:
            # cache full sin/cos embeddings if shape provided up front
            embeds = build_rotary_pos_embed(
                feat_shape=feat_shape,
                dim=dim,
                max_res=max_res,
                linear_bands=linear_bands,
                in_pixels=in_pixels,
                ref_feat_shape=self.ref_feat_shape,
            )
            self.bands = None
            self.register_buffer(
                'pos_embed',
                torch.cat(embeds, -1),
                persistent=False,
            )

    def get_embed(self, shape: Optional[List[int]] = None):
        if self.bands is not None and shape is not None:
            # rebuild embeddings every call, use if target shape changes
            embeds = build_rotary_pos_embed(
                shape,
                self.bands,
                in_pixels=self.in_pixels,
                ref_feat_shape=self.ref_feat_shape,
            )
            return torch.cat(embeds, -1)
        elif self.pos_embed is not None:
            return self.pos_embed
        else:
            assert False, "get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands"

    def forward(self, x):
        # assuming channel-first tensor where spatial dim are >= 2
        pos_embed = self.get_embed(x.shape[2:])
        return apply_rot_embed_cat(x, pos_embed)


class NomicVisionPatchEmbeddings(nn.Module):
    def __init__(
        self,
        config,
    ):
        super().__init__()
        img_size = _pair(config.img_size)
        patch_size = _pair(config.patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Linear(
            config.num_channels * patch_size[0] * patch_size[1], config.n_embd, bias=config.patch_embed_bias
        )

        self.learned_pos_embedding = False
        self.sinusoidal_pos_embedding = False
        self.no_embed_class = getattr(config, "no_embed_class", False)

        self.cls_token = (
            nn.Parameter(torch.zeros(1, 1, config.n_embd)) if not getattr(config, "no_cls_token", False) else None
        )
        if config.learned_pos_embedding:
            # this is the default in DINO
            self.learned_pos_embedding = True
            # hack for timm dinov2 with registers
            num_patches = self.num_patches if getattr(config, "register_tokens", 0) > 0 else self.num_patches + 1
            self.pos_embed = (
                nn.Parameter(torch.randn(1, num_patches, config.n_embd) * 0.02)
                if getattr(config, "use_pos_embed", True)
                else None
            )
        elif getattr(config, "sinusoidal_pos_embedding", False):
            self.sinusoidal_pos_embedding = True
            if getattr(config, "use_pos_embed", True):
                self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, config.n_embd), requires_grad=False)
                pos_embed = get_2d_sincos_pos_embed(config.n_embd, self.grid_size[0], add_cls_token=True)
                self.pos_embed.data.copy_(torch.from_numpy(pos_embed).to(self.pos_embed))
            else:
                self.pos_embed = None
        else:
            self.pos_embed = (
                nn.Parameter(torch.randn(1, self.num_patches + 1, config.n_embd) * 0.02)
                if getattr(config, "use_pos_embed", True)
                else None
            )

        if getattr(config, "register_tokens", 0) > 0:
            self.reg_token = nn.Parameter(torch.randn(1, config.register_tokens, config.n_embd) * 0.02)
        else:
            self.reg_token = None

        if config.mask_token:
            self.mask_token = nn.Parameter(torch.zeros(1, config.n_embd))

        self.patch_dropout = nn.Identity()

        if getattr(config, "use_rotary_pos_emb", False):
            ref_feat_shape = getattr(config, "ref_feat_shape", None)
            ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None
            self.rope = NomicVisionRotaryEmbeddingCat(
                config.n_embd // config.n_head,
                in_pixels=False,
                feat_shape=self.grid_size,
                ref_feat_shape=ref_feat_shape,
            )
        else:
            self.rope = None

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """
        num_patches = embeddings.shape[1] - 1
        num_positions = self.pos_embed.shape[1] - 1
        if num_patches == num_positions and height == width:
            return self.pos_embed
        class_pos_embed = self.pos_embed[:, 0]
        patch_pos_embed = self.pos_embed[:, 1:]
        dim = embeddings.shape[-1]
        height = height // self.patch_size[0]
        width = width // self.patch_size[1]
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        height, width = height + 0.1, width + 0.1
        patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)),
            mode="bicubic",
            align_corners=False,
        )
        if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
            raise ValueError("Width or height does not match with the interpolated position embeddings")
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

    def forward(self, x):
        # deepspeed case where the input is in fp32
        if x.dtype != self.proj.weight.dtype:
            x = x.to(dtype=self.proj.weight.dtype)

        _, _, height, width = x.shape
        x = self.proj(
            rearrange(
                x,
                "b c (h p1) (w p2) -> b h w (c p1 p2)",
                p1=self.patch_size[0],
                p2=self.patch_size[1],
            )
        )
        embeddings = rearrange(x, "b h w c -> b (h w) c")

        to_cat = []
        if self.cls_token is not None:
            if self.sinusoidal_pos_embedding:
                cls_token = self.cls_token + self.pos_embed[:, 0]
                cls_token = cls_token.expand(embeddings.shape[0], -1, -1)
                to_cat += [cls_token]
            else:
                cls_token = self.cls_token.expand(embeddings.shape[0], 1, -1)
                to_cat += [cls_token]

        if self.reg_token is not None:
            to_cat += [self.reg_token.expand(embeddings.shape[0], -1, -1)]

        rot_pos_embed = self.rope.get_embed() if self.rope is not None else None

        if self.no_embed_class:
            if self.learned_pos_embedding:
                embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
            else:
                if self.pos_embed is not None:
                    embeddings = embeddings + self.pos_embed
            if to_cat:
                embeddings = torch.cat(to_cat + [embeddings], dim=1)
        else:
            if to_cat:
                embeddings = torch.cat(to_cat + [embeddings], dim=1)
            if self.learned_pos_embedding:
                if self.pos_embed is not None:
                    embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
            else:
                if self.pos_embed is not None:
                    embeddings = embeddings + self.pos_embed

        embeddings = self.patch_dropout(embeddings)

        return embeddings, rot_pos_embed


class NomicBertEmbeddings(nn.Module):
    def __init__(self, config):
        """
        If max_position_embeddings <= 0, there's no position embeddings
        If type_vocab_size <= 0, there's no token type embeddings
        """
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
        self.type_vocab_size = config.type_vocab_size
        if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
            self.position_embeddings = nn.Embedding(
                config.max_position_embeddings,
                config.hidden_size,
            )
        if self.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

    def forward(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None):
        """
        input_ids: (batch, seqlen)
        position_ids: (batch, seqlen)
        token_type_ids: (batch, seqlen)
        """
        batch_size, seqlen = input_ids.shape

        if inputs_embeds is None:
            embeddings = self.word_embeddings(input_ids)
        else:
            embeddings = inputs_embeds

        if self.type_vocab_size > 0:
            if token_type_ids is None:
                token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
            token_type_embeddings = self.token_type_embeddings(token_type_ids)
            embeddings = embeddings + token_type_embeddings

        if self.max_position_embeddings > 0:
            if position_ids is None:
                position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings
        return embeddings


class NomicBertMLP(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        activation=F.gelu,
        bias1=True,
        bias2=True,
        return_residual=False,
        fused_bias_fc=False,
    ):
        super().__init__()
        out_features = out_features if out_features is not None else in_features
        hidden_features = hidden_features if hidden_features is not None else in_features * 4
        self.return_residual = return_residual
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
        approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
        self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)

    def forward(self, x):
        y = self.fc1(x)
        y = self.activation(y)
        y = self.fc2(y)
        return y if not self.return_residual else (y, x)


class NomciBertGatedMLP(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        activation=F.sigmoid,
        bias1=True,
        bias2=True,
        multiple_of=256,
        return_residual=False,
        fused_bias_fc=True,
        device=None,
        dtype=None,
        norm_layer=False,
    ):
        super().__init__()
        out_features = out_features if out_features is not None else in_features
        hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
        hidden_features = int((hidden_features + multiple_of - 1) // multiple_of * multiple_of)
        self.return_residual = return_residual

        self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
        self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
        self.activation = activation
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
        self.norm = nn.LayerNorm(hidden_features) if norm_layer else nn.Identity()

    def forward(self, x):
        y = self.fc11(x)
        gate = self.fc12(x)
        if self.activation == F.sigmoid:  # Special case for GLU
            y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
        else:
            y = y * self.activation(gate)

        # eva uses layer norm after the activation
        y = self.norm(y)

        y = self.fc2(y)
        return y if not self.return_residual else (y, x)


def rotate_half(x, interleaved=False):
    if not interleaved:
        x1, x2 = x.chunk(2, dim=-1)
        return torch.cat((-x2, x1), dim=-1)
    else:
        x1, x2 = x[..., ::2], x[..., 1::2]
        return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)


def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
    """
    x: (batch_size, seqlen, nheads, headdim)
    cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
    """
    ro_dim = cos.shape[-1] * 2
    assert ro_dim <= x.shape[-1]
    cos, sin = (
        cos[offset : offset + x.shape[1]],
        sin[offset : offset + x.shape[1]],
    )
    cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
    sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
    return torch.cat(
        [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
        dim=-1,
    )


class NomicBertRotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim: int,
        base=10000.0,
        interleaved=False,
        scale_base=None,
        pos_idx_in_fp32=True,
        device=None,
    ):
        """
        interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
            of 1st half and 2nd half (GPT-NeoX style).
        pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
            otherwise they might be in lower precision.
            This option was added because previously (before 2023-07-02), when we construct
            the position indices, we use the dtype of self.inv_freq. In most cases this would
            be fp32, but if the model is trained in pure bf16 (not mixed precision), then
            self.inv_freq would be bf16, and the position indices are also in bf16.
            Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
            embeddings for some positions will coincide.
            To maintain compatibility with models previously trained in pure bf16,
            we add this option.
        """
        super().__init__()
        self.dim = dim
        self.base = float(base)
        self.pos_idx_in_fp32 = pos_idx_in_fp32
        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = self._compute_inv_freq(device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.interleaved = interleaved
        self.scale_base = scale_base
        scale = (
            (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
            if scale_base is not None
            else None
        )
        self.register_buffer("scale", scale, persistent=False)

        self._seq_len_cached = 0
        self._cos_cached = None
        self._sin_cached = None
        self._cos_k_cached = None
        self._sin_k_cached = None

    def _compute_inv_freq(self, device=None):
        return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))

    def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
        # Reset the tables if the sequence length has changed,
        # if we're on a new device (possibly due to tracing for instance),
        # or if we're switching from inference mode to training
        if (
            seqlen > self._seq_len_cached
            or self._cos_cached is None
            or self._cos_cached.device != device
            or self._cos_cached.dtype != dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._seq_len_cached = seqlen
            # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
            # And the output of arange can be quite large, so bf16 would lose a lot of precision.
            # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
            if self.pos_idx_in_fp32:
                t = torch.arange(seqlen, device=device, dtype=torch.float32)
                # We want fp32 here as well since inv_freq will be multiplied with t, and the output
                # will be large. Having it in bf16 will lose a lot of precision and cause the
                # cos & sin output to change significantly.
                # We want to recompute self.inv_freq if it was not loaded in fp32
                if self.inv_freq.dtype != torch.float32:
                    inv_freq = self._compute_inv_freq(device=device)
                else:
                    inv_freq = self.inv_freq
            else:
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                inv_freq = self.inv_freq
            # Don't do einsum, it converts fp32 to fp16 under AMP
            # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            freqs = torch.outer(t, inv_freq)
            self._cos_cached = torch.cos(freqs).to(dtype)
            self._sin_cached = torch.sin(freqs).to(dtype)

    def forward(
        self,
        qkv: torch.Tensor,
        kv: Optional[torch.Tensor] = None,
        seqlen_offset: Union[int, torch.Tensor] = 0,
        max_seqlen: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
             else it's just q of shape (batch, seqlen, nheads, headdim)
        kv: (batch, seqlen, 2, nheads, headdim)
        seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
            Most commonly used in inference when we have KV cache.
            If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
            should pass in max_seqlen, which will update the cos / sin cache up to that length.
        Apply rotary embedding *inplace* to qkv and / or kv.
        """
        seqlen = qkv.shape[1]
        if seqlen > self._seq_len_cached:
            self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
        elif max_seqlen is not None:
            self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
        elif isinstance(seqlen_offset, int):
            self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)

        q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
        k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
        return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)


class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
    def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
        super().__init__(**kwargs)
        self.rotary_scaling_factor = rotary_scaling_factor
        self.max_position_embeddings = max_position_embeddings

    def _compute_inv_freq(self, base=None, device=None):
        if base is None:
            base = self.base
        return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))

    def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
        # Reset the tables if the sequence length has changed,
        # if we're on a new device (possibly due to tracing for instance),
        # or if we're switching from inference mode to training
        if seqlen > self.max_position_embeddings:
            base = self.base * (
                (self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = self._compute_inv_freq(base=base, device=device)
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        if (
            seqlen > self._seq_len_cached
            or self._cos_cached is None
            or self._cos_cached.device != device
            or self._cos_cached.dtype != dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._seq_len_cached = seqlen
            # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
            # And the output of arange can be quite large, so bf16 would lose a lot of precision.
            # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
            if self.pos_idx_in_fp32:
                t = torch.arange(seqlen, device=device, dtype=torch.float32)
                # We want fp32 here as well since inv_freq will be multiplied with t, and the output
                # will be large. Having it in bf16 will lose a lot of precision and cause the
                # cos & sin output to change significantly.
                # We want to recompute self.inv_freq if it was not loaded in fp32
                if self.inv_freq.dtype != torch.float32:
                    if seqlen > self.max_position_embeddings:
                        base = self.base * (
                            (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
                        ) ** (self.dim / (self.dim - 2))
                    else:
                        base = self.base
                    inv_freq = self._compute_inv_freq(device=device, base=base)
                else:
                    inv_freq = self.inv_freq
            else:
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                inv_freq = self.inv_freq
            # Don't do einsum, it converts fp32 to fp16 under AMP
            # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            freqs = torch.outer(t, inv_freq)
            if self.scale is None:
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)
            else:
                power = (
                    torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
                ) / self.scale_base
                scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
                # We want the multiplication by scale to happen in fp32
                self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
                self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
                self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)


class NomicBertAttention(nn.Module):
    """Multi-head self-attention and cross-attention"""

    def __init__(
        self,
        config,
    ) -> None:
        """
        num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
        return_residual: whether to return the input x along with the output. This is for
            performance reason: for post-norm architecture, returning the input allows us
            to fuse the backward of nn.Linear with the residual connection.
        """
        super().__init__()
        self.embed_dim = config.n_embd
        self.use_flash_attn = config.use_flash_attn
        self.fused_bias_fc = config.fused_bias_fc

        self.num_heads = config.n_head
        self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
        assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
        self.head_dim = self.embed_dim // self.num_heads
        # we don't really support mqa / gqa for now
        qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)

        self.register_buffer(
            "norm_factor",
            torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
            persistent=False,
        )

        self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
        if self.rotary_emb_dim > 0:
            if getattr(config, "rotary_scaling_factor", None):
                self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
                    dim=self.rotary_emb_dim,
                    base=config.rotary_emb_base,
                    scale_base=config.rotary_emb_scale_base,
                    interleaved=config.rotary_emb_interleaved,
                    rotary_scaling_factor=config.rotary_scaling_factor,
                    max_position_embeddings=config.max_trained_positions,
                )
            else:
                self.rotary_emb = NomicBertRotaryEmbedding(
                    dim=self.rotary_emb_dim,
                    base=config.rotary_emb_base,
                    scale_base=config.rotary_emb_scale_base,
                    interleaved=config.rotary_emb_interleaved,
                )
            # bug in xformers: https://github.com/facebookresearch/xformers/issues/841
            # uses the head dimension instead of the sequence dimension
            self.rotary_head_dim = getattr(config, "rotary_head_dim", False)

        self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)

        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
        self.causal = config.causal
        self.drop = nn.Dropout(config.attn_pdrop)
        self.num_prefix_tokens = max(getattr(config, "register_tokens", 1), 1)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        is_padded_inputs: Optional[bool] = True,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seq_len: Optional[int] = None,
        rope: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        has_layer_past = past_key_value is not None

        if has_layer_past:
            past_key_value = past_key_value[0]
            past_len = past_key_value[1]
        else:
            past_len = 0

        qkv = self.Wqkv(hidden_states)
        qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)

        past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None

        if self.rotary_emb_dim > 0:
            if self.rotary_head_dim:
                qkv = rearrange(qkv, "b s three h d -> b h three s d")
            qkv = self.rotary_emb(qkv, seqlen_offset=past_len)

            if self.rotary_head_dim:
                qkv = rearrange(qkv, "b h three s d -> b s three h d")
        elif rope is not None:
            q, k, v = qkv.permute(0, 3, 1, 2, 4).unbind(dim=-2)
            q = torch.cat(
                [q[:, :, : self.num_prefix_tokens], apply_rot_embed_cat(q[:, :, self.num_prefix_tokens :], rope)], dim=2
            ).type_as(q)
            k = torch.cat(
                [k[:, :, : self.num_prefix_tokens], apply_rot_embed_cat(k[:, :, self.num_prefix_tokens :], rope)], dim=2
            ).type_as(q)

            qkv = torch.stack([q, k, v], dim=-2)
            qkv = rearrange(qkv, "b h s three d -> b s three h d")

        query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]

        query = query.permute(0, 2, 1, 3)
        key = key.permute(0, 2, 1, 3)
        value = value.permute(0, 2, 1, 3)
        if scaled_dot_product_attention is not None:
            attn_output = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=self.drop.p, is_causal=False
            )
        else:
            attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
            if attention_mask is not None:
                attention_scores = attention_scores + attention_mask

            attentions_probs = F.softmax(attention_scores, dim=-1)
            attentions_probs = self.drop(attentions_probs)

            attn_output = torch.matmul(attentions_probs, value)

        attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")

        attn_output = self.out_proj(attn_output)

        return attn_output


class NomicBertBlock(NomicBertPreTrainedModel):
    def __init__(
        self,
        config,
    ):
        super().__init__(config=config)
        self.prenorm = config.prenorm
        self.fused_dropout_add_ln = config.fused_dropout_add_ln

        self.attn = NomicBertAttention(config)
        activation = (
            F.sigmoid
            if config.activation_function == "glu"
            else (F.silu if config.activation_function == "swiglu" else F.gelu)
        )
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            self.mlp = NomciBertGatedMLP(
                config.n_embd,
                hidden_features=config.n_inner,
                bias1=config.mlp_fc1_bias,
                bias2=config.mlp_fc2_bias,
                activation=activation,
                fused_bias_fc=config.fused_bias_fc,
                norm_layer=getattr(config, "norm_mlp", False),
            )
        else:
            self.mlp = NomicBertMLP(
                config.n_embd,
                hidden_features=config.n_inner,
                bias1=config.mlp_fc1_bias,
                bias2=config.mlp_fc2_bias,
                activation=activation,
                fused_bias_fc=config.fused_bias_fc,
            )

        self.dropout1 = nn.Dropout(config.resid_pdrop)
        self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.dropout2 = nn.Dropout(config.resid_pdrop)

    def forward(
        self,
        hidden_states: torch.Tensor,
        hidden_states2: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        is_padded_inputs: Optional[bool] = True,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seq_len: Optional[int] = None,
        rope: Optional[torch.Tensor] = None,
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
        """
        if self.prenorm:
            dropped = self.dropout1(hidden_states)
            residual = (dropped + residual) if residual is not None else dropped
            hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
            hidden_states = self.attn(
                hidden_states,
                attention_mask=attention_mask,
                is_padded_inputs=is_padded_inputs,
                cu_seqlens=cu_seqlens,
                max_seq_len=max_seq_len,
                rope=rope,
            )

            dropped = self.dropout2(hidden_states)
            residual = (dropped + residual) if residual is not None else dropped
            hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
            hidden_states = self.mlp(hidden_states)

            return hidden_states, None, residual
        else:
            assert residual is None
            attn_outputs = self.attn(
                hidden_states,
                attention_mask=attention_mask,
                is_padded_inputs=is_padded_inputs,
                cu_seqlens=cu_seqlens,
                max_seq_len=max_seq_len,
                rope=rope,
            )
            hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
            mlp_out = self.mlp(hidden_states)

            hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
            return hidden_states, None, None


class NomicBertEncoder(nn.Module):
    def __init__(self, config: GPT2Config):
        super().__init__()
        self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
        self.gradient_checkpointing = False
        self.config = config

    def forward(
        self,
        hidden_states: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        is_padded_inputs: Optional[bool] = True,
        rope: Optional[torch.Tensor] = None,
    ):
        """If subset_mask is not None, we only want output for the subset of the sequence.
        This means that we only compute the last layer output for these tokens.
        subset_mask: (batch, seqlen), dtype=torch.bool
        """
        hidden_states2 = None
        residual = None

        for _, layer in enumerate(self.layers):
            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs)

                    return custom_forward

                hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    hidden_states,
                    hidden_states2,
                    residual,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    is_padded_inputs,
                    output_attentions,
                    use_cache,
                    None,
                    None,
                    rope,
                    # if you freeze ANY layers, you need `use_reentrant=False`
                    # https://github.com/huggingface/transformers/issues/21381
                    # https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
                    use_reentrant=False,
                )

            else:
                hidden_states, hidden_states2, residual = layer(
                    hidden_states,
                    hidden_states2,
                    residual,
                    attention_mask,
                    position_ids,
                    None,
                    is_padded_inputs,
                    output_attentions,
                    use_cache,
                    rope=rope,
                )
        return hidden_states


class NomicBertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.n_embd, config.n_embd)
        self.activation = nn.Tanh()

    def forward(self, hidden_states, pool=True):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class NomicBertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
        approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
        if config.activation_function == "swiglu":
            self.transform_act_fn = F.silu
        else:
            self.transform_act_fn = nn.GELU(approximate=approximate)

        self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.layer_norm(hidden_states)

        return hidden_states


class NomicBertLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.transform = NomicBertPredictionHeadTransform(config)

        self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class NomicBertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = NomicBertLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class NomicBertModel(NomicBertPreTrainedModel):
    def __init__(self, config: GPT2Config, add_pooling_layer=True):
        super().__init__(config)
        self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
            config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)

        assert config.activation_function in [
            "gelu",
            "gelu_new",
            "gelu_fast",
            "gelu_pytorch_tanh",
            "swiglu",
            "geglu",
            "glu",
        ]

        self.embeddings = NomicBertEmbeddings(config)
        self.emb_drop = nn.Dropout(config.resid_pdrop)
        self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.encoder = NomicBertEncoder(config)
        self.pooler = NomicBertPooler(config) if add_pooling_layer else None

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        token_type_ids=None,
        return_dict=None,
        matryoshka_dim=None,
        inputs_embeds=None,
    ):
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
        hidden_states = self.embeddings(
            input_ids=input_ids, 
            position_ids=position_ids, 
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )
        hidden_states = self.emb_ln(hidden_states)
        hidden_states = self.emb_drop(hidden_states)

        attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
        sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)

        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if matryoshka_dim:
            sequence_output = sequence_output[:, :matryoshka_dim]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
        )


class NomicBertForPreTraining(NomicBertPreTrainedModel):
    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]

    def __init__(self, config: GPT2Config):
        super().__init__(config)

        self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
        self.cls = NomicBertPreTrainingHeads(config)
        self.mlm_loss = nn.CrossEntropyLoss()

        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
        self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight

    def forward(
        self,
        input_ids,
        position_ids=None,
        token_type_ids=None,
        attention_mask=None,
        labels=None,
    ):
        """
        If labels are provided, they must be -100 for masked out tokens (as specified in the attention
        mask).
        Outputs:
            if `labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        """
        outputs = self.bert(
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
        )
        sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output

        prediction_scores = self.cls(sequence_output)

        total_loss = None
        if labels is not None:
            masked_lm_loss = self.mlm_loss(
                rearrange(prediction_scores, "... v -> (...) v"),
                rearrange(labels, "... -> (...)"),
            )
            total_loss = masked_lm_loss.float()

        return MaskedLMOutput(
            loss=total_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=None,
        )


class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = NomicBertModel(config)
        classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.n_embd, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.bert(
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
    return GPT2Config(
        n_embd=vit_config.hidden_size,
        n_layer=vit_config.num_hidden_layers,
        n_head=vit_config.num_attention_heads,
        n_inner=vit_config.intermediate_size,
        activation_function=vit_config.hidden_act,
        vocab_size=0,  # no vocab since using patches
        n_positions=0,  # No absolute position embedding
        resid_pdrop=0.0,  # No dropout
        embd_pdrop=getattr(vit_config, "dropout", 0.0),
        attn_pdrop=vit_config.attention_probs_dropout_prob,
        layer_norm_epsilon=vit_config.layer_norm_eps,
        initializer_range=vit_config.initializer_range,
        bos_token_id=None,
        eos_token_id=None,
        # These are new arguments not in the original GPT2Config
        drop_path_rate=0.0,
        # Why is there double layer norm??
        prepre_layernom=False,
        layer_scale=False,
        layer_scale_init=None,
        img_size=vit_config.image_size,
        patch_size=vit_config.patch_size,
        num_channels=vit_config.num_channels,
        prenorm=True,
        parallel_block=False,
        parallel_block_tied_norm=False,
        rotary_emb_fraction=0,
        tie_word_embeddings=False,
        fused_dropout_add_ln=True,
        fused_bias_fc=True,
        patch_embed_bias=True,
        use_flash_attn=True,
        qkv_proj_bias=True,
        mlp_fc1_bias=getattr(vit_config, "mlp_fc1_bias", True),
        mlp_fc2_bias=getattr(vit_config, "mlp_fc2_bias", True),
        use_rms_norm=False,
        causal=False,
        hidden_features_scaling_factor=1.0,
        mask_token=False,
        learned_pos_embedding=False,
        patch_dropout=0,
        sinusoidal_pos_embedding=vit_config.model_type == "vit_mae",
    )


class NomicAttentionPooling(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_dim = config.n_embd
        self.use_flash_attn = config.use_flash_attn
        self.fused_bias_fc = config.fused_bias_fc

        self.num_heads = config.n_head
        self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
        assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
        self.head_dim = self.embed_dim // self.num_heads
        # we don't really support mqa / gqa for now
        kv_dim = 2 * self.head_dim * self.num_heads_kv

        self.register_buffer(
            "norm_factor",
            torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
            persistent=False,
        )

        self.Wq = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
        self.Wkv = nn.Linear(self.embed_dim, kv_dim, bias=config.qkv_proj_bias)

        self.latent = nn.Parameter(torch.zeros(1, 1, self.embed_dim))

        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
        self.causal = config.causal
        self.drop = nn.Dropout(config.attn_pdrop)

    def init_weights(self):
        trunc_normal_tf_(self.latent, std=self.embed_dim**-0.5)

    def forward(
        self,
        kv,
        attention_mask=None,
        cu_seqlens_k=None,
        max_seqlen_k=None,
        is_padded_inputs: Optional[bool] = True,
        output_attentions: bool = False,
    ):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
            causal: if passed, will override self.causal
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into q.
            max_seqlen: int. Maximum sequence length in the batch of q.
            cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into kv.
            max_seqlen_k: int. Maximum sequence length in the batch of k and v.
        """
        q_latent = self.latent.expand(kv.size(0), -1, -1)
        q = self.Wq(q_latent)
        bsz, q_len, h_size = q.shape
        kv = self.Wkv(kv)
        query = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
        kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)

        key, value = kv[:, :, 0], kv[:, :, 1]

        query = query.permute(0, 2, 1, 3)
        key = key.permute(0, 2, 1, 3)
        value = value.permute(0, 2, 1, 3)

        attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        attentions_probs = F.softmax(attention_scores, dim=-1)
        attentions_probs = self.drop(attentions_probs)

        attn_output = torch.matmul(attentions_probs, value)
        attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")

        attn_output = self.out_proj(attn_output)

        return attn_output


class NomicMultiHeadAttentionPooling(nn.Module):
    def __init__(
        self,
        config,
    ):
        super().__init__()
        self.prenorm = config.prenorm
        self.fused_dropout_add_ln = config.fused_dropout_add_ln

        self.attn = NomicAttentionPooling(config)
        activation = (
            F.sigmoid
            if config.activation_function == "glu"
            else (F.silu if config.activation_function == "swiglu" else F.gelu)
        )
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            self.mlp = NomciBertGatedMLP(
                config.n_embd,
                hidden_features=config.n_inner,
                bias1=config.mlp_fc1_bias,
                bias2=config.mlp_fc2_bias,
                activation=activation,
                fused_bias_fc=config.fused_bias_fc,
            )
        else:
            self.mlp = NomicBertMLP(
                config.n_embd,
                hidden_features=config.n_inner,
                bias1=config.mlp_fc1_bias,
                bias2=config.mlp_fc2_bias,
                activation=activation,
                fused_bias_fc=config.fused_bias_fc,
            )

        self.dropout1 = nn.Dropout(config.resid_pdrop)
        self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.dropout2 = nn.Dropout(config.resid_pdrop)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
        """

        attn_outputs = self.attn(
            hidden_states,
            attention_mask=attention_mask,
        )

        normed = self.norm1(attn_outputs)
        hidden_states = hidden_states + self.mlp(normed)

        return hidden_states


class NomicVisionPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
    """

    config_class = NomicBertConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Block"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config)
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                )
            )
        self.config = config


class NomicVisionModel(NomicVisionPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embeddings = NomicVisionPatchEmbeddings(config)
        self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])

        self.selector = NomicMultiHeadAttentionPooling(config)

        self.global_pool = getattr(config, "global_pool", None)
        self.num_prefix_tokens = (1 if not getattr(config, "no_cls_token", False) else 0) + getattr(
            config, "register_tokens", 0
        )

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

    def forward(
        self,
        pixel_values,
        attention_mask=None,
        position_ids=None,
        token_type_ids=None,
        return_dict=None,
        matryoshka_dim=None,
    ):
        embeddings, rope = self.embeddings(pixel_values)

        original_dtype = embeddings.dtype

        hidden_states = embeddings
        # unused but easier to pass to gradient checkpointing as words
        residual = None
        for layer in self.layers:
            # need to pass none for backwards compatability
            hidden_states, _, residual = layer(
                hidden_states, None, residual=residual, is_padded_inputs=False, rope=rope
            )

        hidden_states = hidden_states + residual
        if self.global_pool == "avg":
            hidden_states = hidden_states[:, self.num_prefix_tokens :].mean(dim=1)

        pooled_output = self.selector(hidden_states)

        return BaseModelOutputWithPast(
            last_hidden_state=pooled_output,
            hidden_states=hidden_states,
        )