File size: 52,700 Bytes
3e386a9 e119b48 3e386a9 e119b48 fcebeef e119b48 fcebeef e119b48 fcebeef e119b48 fcebeef e119b48 3e386a9 13e12b1 fcebeef 13e12b1 fcebeef 3e386a9 13e12b1 3e386a9 fcebeef 3e386a9 fcebeef 3e386a9 fcebeef 3e386a9 fcebeef 3e386a9 fcebeef 3e386a9 fcebeef 3e386a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 |
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import os
import logging
from functools import partial
from typing import Optional, List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import GPT2Config, PreTrainedModel
from transformers.models.bert.modeling_bert import (
BaseModelOutputWithPoolingAndCrossAttentions,
BertForPreTrainingOutput,
SequenceClassifierOutput
)
import re
from collections import OrderedDict
from safetensors.torch import load_file as safe_load_file
from transformers.utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
from .configuration_hf_nomic_bert import NomicBertConfig
logger = logging.getLogger(__name__)
# adapted from flash attention, added safe serialization option for hf models
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
# If not fp32, then we don't want to load directly to the GPU
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
is_sharded = False
load_safe = False
resolved_archive_file = None
weights_path = os.path.join(model_name, WEIGHTS_NAME)
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
if os.path.isfile(weights_path):
resolved_archive_file = cached_file(
model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
)
elif os.path.isfile(weights_index_path):
resolved_archive_file = cached_file(
model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
)
is_sharded = True
elif os.path.isfile(safe_weights_path):
resolved_archive_file = cached_file(
model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
)
load_safe = True
elif os.path.isfile(safe_weights_index_path):
resolved_archive_file = cached_file(
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
)
is_sharded = True
load_safe = True
else: # Try loading from HF hub instead of from local files
weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
if resolved_archive_file is None:
weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
resolved_archive_file = cached_file(model_name, weight_index,
_raise_exceptions_for_missing_entries=False)
if resolved_archive_file is not None:
is_sharded = True
load_safe = safe_serialization
if resolved_archive_file is None:
raise EnvironmentError(f"Model name {model_name} was not found.")
if load_safe:
loader = partial(safe_load_file, device=mapped_device)
else:
loader = partial(torch.load, map_location=mapped_device)
if is_sharded:
# resolved_archive_file becomes a list of files that point to the different
# checkpoint shards in this case.
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
model_name, resolved_archive_file
)
state_dict = {}
for sharded_file in resolved_archive_file:
state_dict.update(loader(sharded_file))
else:
state_dict = loader(resolved_archive_file)
# Convert dtype before moving to GPU to save memory
if dtype is not None:
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
return state_dict
def filter_shapes(state_dict, model):
"""
Filters the state dict to match the current model shape.
"""
filtered_state_dict = {}
for key, value in state_dict.items():
if key in model.state_dict():
if value.shape == model.state_dict()[key].shape:
filtered_state_dict[key] = value
return filtered_state_dict
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
"""
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
"""
def add_bert_prefix(key):
# prepend bert. to the key
if key.startswith("bert.") or key.startswith("cls."):
return key
return f"bert.{key}"
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
return key
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
# Layers
def key_mapping_layers(key):
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
key = re.sub(
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm2.\2",
key,
)
key = re.sub(
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
r"cls.predictions.transform.layer_norm.\1",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
key = re.sub(
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc2.\2",
key,
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
last_layer_subset = getattr(config, "last_layer_subset", False)
for d in range(config.num_hidden_layers):
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
continue
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
if not (last_layer_subset and d == config.num_hidden_layers - 1):
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat(
[Wq, Wk, Wv], dim=0
)
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
else:
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
def key_mapping_attn(key):
return re.sub(
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
r"bert.encoder.layers.\1.attn.out_proj.\2",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
def key_mapping_decoder_bias(key):
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
# remove nsp weights, we don't use
state_dict.pop("cls.seq_relationship.weight", None)
state_dict.pop("cls.seq_relationship.bias", None)
state_dict.pop("bert.embeddings.position_ids", None)
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
if remove_cls_weights:
cls_weights = ["cls.predictions.decoder.bias",
"cls.predictions.transform.dense.weight",
"cls.predictions.transform.dense.bias",
"cls.predictions.transform.layer_norm.weight",
"cls.predictions.transform.layer_norm.bias",
"cls.predictions.decoder.weight"]
for weight in cls_weights:
state_dict.pop(weight, None)
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
)
if not remove_cls_weights:
decoder_weight = state_dict["cls.predictions.decoder.weight"]
state_dict["cls.predictions.decoder.weight"] = F.pad(
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
)
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
# strongly negative (i.e. the decoder shouldn't predict those indices).
# TD [2022-05-09]: I don't think it affects the MLPerf training.
if "cls.predictions.decoder.bias" in state_dict:
decoder_bias = state_dict["cls.predictions.decoder.bias"]
state_dict["cls.predictions.decoder.bias"] = F.pad(
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
)
if add_pooling_layer is False:
pooler_weights = ["bert.pooler.dense.weight",
"bert.pooler.dense.bias",
]
for key in pooler_weights:
state_dict.pop(key, None)
if remove_bert:
def remove_bert_prefix(key):
key = re.sub(r"^bert.", "", key)
return key
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
return state_dict
class NomicBertPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = NomicBertConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Block"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, config, *inputs, **kwargs):
super().__init__(config)
if not isinstance(config, GPT2Config):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
"To create a model from a Google pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
@classmethod
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
"""
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
*inputs, **kwargs: additional input for the specific NomicBert class
(ex: num_labels for NomicBertForSequenceClassification)
"""
# Instantiate model.
if config is None:
config = cls.config_class.from_pretrained(model_name)
remove_cls = cls != NomicBertForPreTraining
remove_bert_prefix = cls != NomicBertForPreTraining
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
num_labels = kwargs.pop("num_labels", None)
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
if rotary_scaling_factor:
config.rotary_scaling_factor = rotary_scaling_factor
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
config.n_positions = 2048
if num_labels:
config.num_labels = num_labels
if "add_pooling_layer" in kwargs:
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
else:
if cls == NomicBertModel:
model = cls(config, *inputs, add_pooling_layer=False)
else:
model = cls(config, *inputs)
# TODO: fix this
# Assuming we know what we're doing when loading from disk
# Prob a bad assumption but i'm tired and want to train this asap
if os.path.exists(model_name):
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
if ignore_mismatched_shapes:
state_dict = filter_shapes(state_dict, model)
load_return = model.load_state_dict(state_dict, strict=False)
else:
# TODO: can probably check config class and see if we need to remap from a bert model
state_dict = state_dict_from_pretrained(model_name)
state_dict = remap_bert_state_dict(state_dict,
config,
remove_bert=remove_bert_prefix,
remove_cls_weights=remove_cls,
add_pooling_layer=getattr(config, "add_pooling_layer", False)
)
if ignore_mismatched_shapes:
state_dict = filter_shapes(state_dict, model)
load_return = model.load_state_dict(
state_dict,
strict=True
)
logger.warning(load_return)
return model
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, NomicBertEncoder):
module.gradient_checkpointing = value
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if module.padding_idx is not None:
nn.init.zeros_(module.weight[module.padding_idx])
class NomicBertEmbeddings(nn.Module):
def __init__(
self,
config
):
"""
If max_position_embeddings <= 0, there's no position embeddings
If type_vocab_size <= 0, there's no token type embeddings
"""
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
)
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
self.type_vocab_size = config.type_vocab_size
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size,
)
if self.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
def forward(self, input_ids, position_ids=None, token_type_ids=None):
"""
input_ids: (batch, seqlen)
position_ids: (batch, seqlen)
token_type_ids: (batch, seqlen)
"""
batch_size, seqlen = input_ids.shape
embeddings = self.word_embeddings(input_ids)
if self.type_vocab_size > 0:
if token_type_ids is None:
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = embeddings + token_type_embeddings
if self.max_position_embeddings > 0:
if position_ids is None:
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
return embeddings
class NomicBertMLP(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
activation=F.gelu,
bias1=True,
bias2=True,
return_residual=False,
fused_bias_fc=False,
):
super().__init__()
out_features = out_features if out_features is not None else in_features
hidden_features = hidden_features if hidden_features is not None else in_features * 4
self.return_residual = return_residual
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
approximate = (
"tanh"
if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
def forward(self, x):
y = self.fc1(x)
y = self.activation(y)
y = self.fc2(y)
return y if not self.return_residual else (y, x)
class NomciBertGatedMLP(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
activation=F.sigmoid,
bias1=True,
bias2=True,
multiple_of=256,
return_residual=False,
fused_bias_fc=True,
device=None,
dtype=None,
):
super().__init__()
out_features = out_features if out_features is not None else in_features
hidden_features = (
hidden_features if hidden_features is not None else int(8 * in_features / 3)
)
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
self.return_residual = return_residual
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
self.activation = activation
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
def forward(self, x):
y = self.fc11(x)
gate = self.fc12(x)
if self.activation == F.sigmoid: # Special case for GLU
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
else:
y = y * self.activation(gate)
y = self.fc2(y)
return y if not self.return_residual else (y, x)
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos, sin = (
cos[offset: offset + x.shape[1]],
sin[offset: offset + x.shape[1]],
)
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
return torch.cat(
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
dim=-1,
)
class NomicBertRotaryEmbedding(nn.Module):
def __init__(
self,
dim: int,
base=10000.0,
interleaved=False,
scale_base=None,
pos_idx_in_fp32=True,
device=None,
):
"""
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
otherwise they might be in lower precision.
This option was added because previously (before 2023-07-02), when we construct
the position indices, we use the dtype of self.inv_freq. In most cases this would
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
self.inv_freq would be bf16, and the position indices are also in bf16.
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
embeddings for some positions will coincide.
To maintain compatibility with models previously trained in pure bf16,
we add this option.
"""
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.interleaved = interleaved
self.scale_base = scale_base
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: Union[int, torch.Tensor] = 0,
max_seqlen: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
else it's just q of shape (batch, seqlen, nheads, headdim)
kv: (batch, seqlen, 2, nheads, headdim)
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
should pass in max_seqlen, which will update the cos / sin cache up to that length.
Apply rotary embedding *inplace* to qkv and / or kv.
"""
seqlen = qkv.shape[1]
if seqlen > self._seq_len_cached:
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
elif max_seqlen is not None:
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
elif isinstance(seqlen_offset, int):
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
super().__init__(**kwargs)
self.rotary_scaling_factor = rotary_scaling_factor
self.max_position_embeddings = max_position_embeddings
def _compute_inv_freq(self, base=None, device=None):
if base is None:
base = self.base
return 1.0 / (
base
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if seqlen > self.max_position_embeddings:
base = self.base * (
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = self._compute_inv_freq(base=base, device=device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
if seqlen > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
else:
base = self.base
inv_freq = self._compute_inv_freq(device=device, base=base)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
class NomicBertAttention(nn.Module):
"""Multi-head self-attention and cross-attention"""
def __init__(
self,
config,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
super().__init__()
self.embed_dim = config.n_embd
self.use_flash_attn = config.use_flash_attn
self.fused_bias_fc = config.fused_bias_fc
self.num_heads = config.n_head
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
self.head_dim = self.embed_dim // self.num_heads
# we don't really support mqa / gqa for now
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
self.register_buffer(
"norm_factor",
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
persistent=False,
)
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
if self.rotary_emb_dim > 0:
if config.rotary_scaling_factor:
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
dim=self.rotary_emb_dim,
base=config.rotary_emb_base,
scale_base=config.rotary_emb_scale_base,
interleaved=config.rotary_emb_interleaved,
rotary_scaling_factor=config.rotary_scaling_factor,
max_position_embeddings=config.n_positions,
)
else:
self.rotary_emb = NomicBertRotaryEmbedding(
dim=self.rotary_emb_dim,
base=config.rotary_emb_base,
scale_base=config.rotary_emb_scale_base,
interleaved=config.rotary_emb_interleaved,
)
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
# uses the head dimension instead of the sequence dimension
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
self.causal = config.causal
self.drop = nn.Dropout(config.attn_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
is_padded_inputs: Optional[bool] = True,
cu_seqlens: Optional[torch.Tensor] = None,
max_seq_len: Optional[int] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
has_layer_past = past_key_value is not None
if has_layer_past:
past_key_value = past_key_value[0]
past_len = past_key_value[1]
else:
past_len = 0
qkv = self.Wqkv(hidden_states)
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
if self.rotary_emb_dim > 0:
if self.rotary_head_dim:
qkv = rearrange(qkv, "b s three h d -> b h three s d")
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
if self.rotary_head_dim:
qkv = rearrange(qkv, "b h three s d -> b s three h d")
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attentions_probs = F.softmax(attention_scores, dim=-1)
attentions_probs = self.drop(attentions_probs)
attn_output = torch.matmul(attentions_probs, value)
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
attn_output = self.out_proj(attn_output)
return attn_output
class NomicBertBlock(nn.Module):
def __init__(
self,
config,
):
super().__init__()
self.prenorm = config.prenorm
self.fused_dropout_add_ln = config.fused_dropout_add_ln
self.attn = NomicBertAttention(config)
activation = (
F.sigmoid
if config.activation_function == "glu"
else (F.silu if config.activation_function == "swiglu" else F.gelu)
)
if config.activation_function in ["glu", "swiglu", "geglu"]:
self.mlp = NomciBertGatedMLP(config.n_embd, hidden_features=config.n_inner, bias1=config.mlp_fc1_bias, bias2=config.mlp_fc2_bias, activation=activation, fused_bias_fc=config.fused_bias_fc)
else:
self.mlp = NomicBertMLP(config.n_embd, hidden_features=config.n_inner, bias1=config.mlp_fc1_bias, bias2=config.mlp_fc2_bias, activation=activation, fused_bias_fc=config.fused_bias_fc)
self.dropout1 = nn.Dropout(config.resid_pdrop)
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.dropout2 = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
hidden_states2: torch.Tensor,
residual: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
is_padded_inputs: Optional[bool] = True,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cu_seqlens: Optional[torch.Tensor] = None,
max_seq_len: Optional[int] = None,
):
r"""Pass the input through the encoder layer.
Args:
hidden_states: the sequence to the encoder layer (required).
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
mixer_subset: for cross-attention only. If not None, will take a subset of x
before applying the query projection. Useful for e.g., ViT where we only care
about the CLS token in the last layer.
"""
if self.prenorm:
dropped = self.dropout1(hidden_states)
residual = (dropped + residual) if residual is not None else dropped
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
hidden_states = self.attn(hidden_states, attention_mask=attention_mask, is_padded_inputs=is_padded_inputs, cu_seqlens=cu_seqlens, max_seq_len=max_seq_len)
dropped = self.dropout2(hidden_states)
residual = (dropped + residual) if residual is not None else dropped
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
hidden_states = self.mlp(hidden_states)
return hidden_states, None, residual
else:
assert residual is None
attn_outputs = self.attn(hidden_states,
attention_mask=attention_mask,
is_padded_inputs=is_padded_inputs,
cu_seqlens=cu_seqlens,
max_seq_len=max_seq_len)
hidden_states = self.norm1(
(self.dropout1(attn_outputs) + hidden_states).to(
dtype=self.norm1.weight.dtype
)
)
mlp_out = self.mlp(hidden_states)
hidden_states = self.norm2(
(self.dropout2(mlp_out) + hidden_states).to(
dtype=self.norm2.weight.dtype
)
)
return hidden_states, None, None
class NomicBertEncoder(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.layers = nn.ModuleList(
[NomicBertBlock(config) for _ in range(config.n_layer)]
)
self.gradient_checkpointing = False
self.config = config
def forward(self,
hidden_states: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
is_padded_inputs: Optional[bool] = True,):
"""If subset_mask is not None, we only want output for the subset of the sequence.
This means that we only compute the last layer output for these tokens.
subset_mask: (batch, seqlen), dtype=torch.bool
"""
hidden_states2 = None
residual = None
for _, layer in enumerate(self.layers):
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs)
return custom_forward
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
hidden_states2,
residual,
attention_mask,
None,
None,
is_padded_inputs,
# if you freeze ANY layers, you need `use_reentrant=False`
# https://github.com/huggingface/transformers/issues/21381
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
use_reentrant=False,
)
else:
hidden_states, hidden_states2, residual = layer(
hidden_states,
hidden_states2,
residual,
attention_mask,
position_ids,
None,
is_padded_inputs,
output_attentions,
use_cache,
)
return hidden_states
class NomicBertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.n_embd, config.n_embd)
self.activation = nn.Tanh()
def forward(self, hidden_states, pool=True):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class NomicBertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
approximate = (
"tanh"
if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
if config.activation_function == "swiglu":
self.transform_act_fn = F.silu
else:
self.transform_act_fn = nn.GELU(approximate=approximate)
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.layer_norm(hidden_states)
return hidden_states
class NomicBertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = NomicBertPredictionHeadTransform(config)
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class NomicBertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = NomicBertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class NomicBertModel(NomicBertPreTrainedModel):
def __init__(self, config: GPT2Config, add_pooling_layer=True):
super().__init__(config)
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if config.vocab_size % self.pad_vocab_size_multiple != 0:
config.vocab_size += self.pad_vocab_size_multiple - (
config.vocab_size % self.pad_vocab_size_multiple
)
assert config.activation_function in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh", "swiglu", "geglu", "glu"]
self.embeddings = NomicBertEmbeddings(
config
)
self.emb_drop = nn.Dropout(config.resid_pdrop)
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.encoder = NomicBertEncoder(config)
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
hidden_states = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
)
hidden_states = self.emb_ln(hidden_states)
hidden_states = self.emb_drop(hidden_states)
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
sequence_output = self.encoder(
hidden_states, attention_mask=attention_mask
)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
)
class NomicBertForPreTraining(NomicBertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config: GPT2Config):
super().__init__(config)
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
self.cls = NomicBertPreTrainingHeads(config)
self.mlm_loss = nn.CrossEntropyLoss()
# Initialize weights and apply final processing
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
self.tie_weights()
def tie_weights(self):
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
labels=None,
):
"""
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
mask).
Outputs:
if `labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
"""
outputs = self.bert(
input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask.bool() if attention_mask is not None else None,
)
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
prediction_scores = self.cls(sequence_output)
total_loss = None
if labels is not None:
masked_lm_loss = self.mlm_loss(
rearrange(prediction_scores, "... v -> (...) v"),
rearrange(labels, "... -> (...)"),
)
total_loss = masked_lm_loss.float()
return BertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
)
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = NomicBertModel(config)
classifier_dropout = (
getattr(config, "classifier_dropout", config.embd_pdrop)
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.n_embd, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask.bool() if attention_mask is not None else None,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|