Update modeling_hf_nomic_bert.py
Browse files- modeling_hf_nomic_bert.py +244 -1
modeling_hf_nomic_bert.py
CHANGED
@@ -22,12 +22,22 @@ from einops import rearrange, repeat
|
|
22 |
from safetensors.torch import load_file as safe_load_file
|
23 |
from torch.nn.modules.utils import _pair
|
24 |
from transformers import GPT2Config, PreTrainedModel, ViTConfig, ViTModel
|
25 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast
|
26 |
from transformers.models.bert.modeling_bert import (
|
27 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
28 |
MaskedLMOutput,
|
29 |
SequenceClassifierOutput,
|
30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
32 |
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
33 |
|
@@ -1853,6 +1863,239 @@ class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
|
1853 |
attentions=outputs.attentions,
|
1854 |
)
|
1855 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1856 |
|
1857 |
def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
|
1858 |
return GPT2Config(
|
|
|
22 |
from safetensors.torch import load_file as safe_load_file
|
23 |
from torch.nn.modules.utils import _pair
|
24 |
from transformers import GPT2Config, PreTrainedModel, ViTConfig, ViTModel
|
|
|
25 |
from transformers.models.bert.modeling_bert import (
|
26 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
27 |
MaskedLMOutput,
|
28 |
SequenceClassifierOutput,
|
29 |
)
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
BaseModelOutput,
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
BaseModelOutputWithPooling,
|
34 |
+
MaskedLMOutput,
|
35 |
+
MultipleChoiceModelOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
ModelOutput,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
42 |
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
43 |
|
|
|
1863 |
attentions=outputs.attentions,
|
1864 |
)
|
1865 |
|
1866 |
+
class NomicBertForMultipleChoice(NomicBertPreTrainedModel):
|
1867 |
+
def __init__(self, config):
|
1868 |
+
super().__init__(config)
|
1869 |
+
|
1870 |
+
self.new = NomicBertModel(config, add_pooling_layer=True)
|
1871 |
+
classifier_dropout = (
|
1872 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1873 |
+
)
|
1874 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1875 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1876 |
+
|
1877 |
+
# Initialize weights and apply final processing
|
1878 |
+
self.post_init()
|
1879 |
+
|
1880 |
+
def forward(
|
1881 |
+
self,
|
1882 |
+
input_ids: Optional[torch.Tensor] = None,
|
1883 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1884 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1885 |
+
position_ids: Optional[torch.Tensor] = None,
|
1886 |
+
head_mask: Optional[torch.Tensor] = None,
|
1887 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1888 |
+
labels: Optional[torch.Tensor] = None,
|
1889 |
+
output_attentions: Optional[bool] = None,
|
1890 |
+
output_hidden_states: Optional[bool] = None,
|
1891 |
+
return_dict: Optional[bool] = None,
|
1892 |
+
unpad_inputs: Optional[bool] = None,
|
1893 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1894 |
+
r"""
|
1895 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1896 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1897 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1898 |
+
`input_ids` above)
|
1899 |
+
"""
|
1900 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1901 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1902 |
+
|
1903 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1904 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1905 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1906 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1907 |
+
inputs_embeds = (
|
1908 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1909 |
+
if inputs_embeds is not None
|
1910 |
+
else None
|
1911 |
+
)
|
1912 |
+
|
1913 |
+
outputs = self.new(
|
1914 |
+
input_ids,
|
1915 |
+
attention_mask=attention_mask,
|
1916 |
+
token_type_ids=token_type_ids,
|
1917 |
+
position_ids=position_ids,
|
1918 |
+
head_mask=head_mask,
|
1919 |
+
inputs_embeds=inputs_embeds,
|
1920 |
+
output_attentions=output_attentions,
|
1921 |
+
output_hidden_states=output_hidden_states,
|
1922 |
+
return_dict=return_dict,
|
1923 |
+
unpad_inputs=unpad_inputs,
|
1924 |
+
)
|
1925 |
+
|
1926 |
+
pooled_output = outputs[1]
|
1927 |
+
|
1928 |
+
pooled_output = self.dropout(pooled_output)
|
1929 |
+
logits = self.classifier(pooled_output)
|
1930 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1931 |
+
|
1932 |
+
loss = None
|
1933 |
+
if labels is not None:
|
1934 |
+
loss_fct = nn.CrossEntropyLoss()
|
1935 |
+
loss = loss_fct(reshaped_logits, labels)
|
1936 |
+
|
1937 |
+
if not return_dict:
|
1938 |
+
output = (reshaped_logits,) + outputs[2:]
|
1939 |
+
return ((loss,) + output) if loss is not None else output
|
1940 |
+
|
1941 |
+
return MultipleChoiceModelOutput(
|
1942 |
+
loss=loss,
|
1943 |
+
logits=reshaped_logits,
|
1944 |
+
hidden_states=outputs.hidden_states,
|
1945 |
+
attentions=outputs.attentions,
|
1946 |
+
)
|
1947 |
+
|
1948 |
+
class NomicBertForTokenClassification(NomicBertPreTrainedModel):
|
1949 |
+
def __init__(self, config):
|
1950 |
+
super().__init__(config)
|
1951 |
+
self.num_labels = config.num_labels
|
1952 |
+
|
1953 |
+
self.bert = NomicBertModel(config, add_pooling_layer=False)
|
1954 |
+
classifier_dropout = (
|
1955 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1956 |
+
)
|
1957 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1958 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1959 |
+
|
1960 |
+
# Initialize weights and apply final processing
|
1961 |
+
self.post_init()
|
1962 |
+
|
1963 |
+
def forward(
|
1964 |
+
self,
|
1965 |
+
input_ids: Optional[torch.Tensor] = None,
|
1966 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1967 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1968 |
+
position_ids: Optional[torch.Tensor] = None,
|
1969 |
+
head_mask: Optional[torch.Tensor] = None,
|
1970 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1971 |
+
labels: Optional[torch.Tensor] = None,
|
1972 |
+
output_attentions: Optional[bool] = None,
|
1973 |
+
output_hidden_states: Optional[bool] = None,
|
1974 |
+
return_dict: Optional[bool] = None,
|
1975 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1976 |
+
r"""
|
1977 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1978 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1979 |
+
"""
|
1980 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1981 |
+
|
1982 |
+
outputs = self.bert(
|
1983 |
+
input_ids,
|
1984 |
+
attention_mask=attention_mask,
|
1985 |
+
token_type_ids=token_type_ids,
|
1986 |
+
position_ids=position_ids,
|
1987 |
+
head_mask=head_mask,
|
1988 |
+
inputs_embeds=inputs_embeds,
|
1989 |
+
output_attentions=output_attentions,
|
1990 |
+
output_hidden_states=output_hidden_states,
|
1991 |
+
return_dict=return_dict,
|
1992 |
+
)
|
1993 |
+
|
1994 |
+
sequence_output = outputs[0]
|
1995 |
+
|
1996 |
+
sequence_output = self.dropout(sequence_output)
|
1997 |
+
logits = self.classifier(sequence_output)
|
1998 |
+
|
1999 |
+
loss = None
|
2000 |
+
if labels is not None:
|
2001 |
+
loss_fct = CrossEntropyLoss()
|
2002 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
2003 |
+
|
2004 |
+
if not return_dict:
|
2005 |
+
output = (logits,) + outputs[2:]
|
2006 |
+
return ((loss,) + output) if loss is not None else output
|
2007 |
+
|
2008 |
+
return TokenClassifierOutput(
|
2009 |
+
loss=loss,
|
2010 |
+
logits=logits,
|
2011 |
+
hidden_states=outputs.hidden_states,
|
2012 |
+
attentions=outputs.attentions,
|
2013 |
+
)
|
2014 |
+
|
2015 |
+
class NomicBertForQuestionAnswering(NomicBertPreTrainedModel):
|
2016 |
+
def __init__(self, config):
|
2017 |
+
super().__init__(config)
|
2018 |
+
self.num_labels = config.num_labels
|
2019 |
+
|
2020 |
+
self.bert = NomicBertModel(config, add_pooling_layer=False)
|
2021 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
2022 |
+
|
2023 |
+
# Initialize weights and apply final processing
|
2024 |
+
self.post_init()
|
2025 |
+
|
2026 |
+
def forward(
|
2027 |
+
self,
|
2028 |
+
input_ids: Optional[torch.Tensor] = None,
|
2029 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2030 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
2031 |
+
position_ids: Optional[torch.Tensor] = None,
|
2032 |
+
head_mask: Optional[torch.Tensor] = None,
|
2033 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
2034 |
+
start_positions: Optional[torch.Tensor] = None,
|
2035 |
+
end_positions: Optional[torch.Tensor] = None,
|
2036 |
+
output_attentions: Optional[bool] = None,
|
2037 |
+
output_hidden_states: Optional[bool] = None,
|
2038 |
+
return_dict: Optional[bool] = None,
|
2039 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
2040 |
+
r"""
|
2041 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2042 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
2043 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
2044 |
+
are not taken into account for computing the loss.
|
2045 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2046 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
2047 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
2048 |
+
are not taken into account for computing the loss.
|
2049 |
+
"""
|
2050 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2051 |
+
|
2052 |
+
outputs = self.bert(
|
2053 |
+
input_ids,
|
2054 |
+
attention_mask=attention_mask,
|
2055 |
+
token_type_ids=token_type_ids,
|
2056 |
+
position_ids=position_ids,
|
2057 |
+
head_mask=head_mask,
|
2058 |
+
inputs_embeds=inputs_embeds,
|
2059 |
+
output_attentions=output_attentions,
|
2060 |
+
output_hidden_states=output_hidden_states,
|
2061 |
+
return_dict=return_dict,
|
2062 |
+
)
|
2063 |
+
|
2064 |
+
sequence_output = outputs[0]
|
2065 |
+
|
2066 |
+
logits = self.qa_outputs(sequence_output)
|
2067 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
2068 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
2069 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
2070 |
+
|
2071 |
+
total_loss = None
|
2072 |
+
if start_positions is not None and end_positions is not None:
|
2073 |
+
# If we are on multi-GPU, split add a dimension
|
2074 |
+
if len(start_positions.size()) > 1:
|
2075 |
+
start_positions = start_positions.squeeze(-1)
|
2076 |
+
if len(end_positions.size()) > 1:
|
2077 |
+
end_positions = end_positions.squeeze(-1)
|
2078 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
2079 |
+
ignored_index = start_logits.size(1)
|
2080 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
2081 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
2082 |
+
|
2083 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
2084 |
+
start_loss = loss_fct(start_logits, start_positions)
|
2085 |
+
end_loss = loss_fct(end_logits, end_positions)
|
2086 |
+
total_loss = (start_loss + end_loss) / 2
|
2087 |
+
|
2088 |
+
if not return_dict:
|
2089 |
+
output = (start_logits, end_logits) + outputs[2:]
|
2090 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
2091 |
+
|
2092 |
+
return QuestionAnsweringModelOutput(
|
2093 |
+
loss=total_loss,
|
2094 |
+
start_logits=start_logits,
|
2095 |
+
end_logits=end_logits,
|
2096 |
+
hidden_states=outputs.hidden_states,
|
2097 |
+
attentions=outputs.attentions,
|
2098 |
+
)
|
2099 |
|
2100 |
def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
|
2101 |
return GPT2Config(
|