zpn commited on
Commit
17e0e05
1 Parent(s): a350440

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2668 -0
README.md ADDED
@@ -0,0 +1,2668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: epoch_0_model
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 76.8507462686567
18
+ - type: ap
19
+ value: 40.592189159090495
20
+ - type: f1
21
+ value: 71.01634655512476
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 91.51892500000001
33
+ - type: ap
34
+ value: 88.50346762975335
35
+ - type: f1
36
+ value: 91.50342077459624
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 47.364
48
+ - type: f1
49
+ value: 46.72708080922794
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 25.178
61
+ - type: map_at_10
62
+ value: 40.244
63
+ - type: map_at_100
64
+ value: 41.321999999999996
65
+ - type: map_at_1000
66
+ value: 41.331
67
+ - type: map_at_3
68
+ value: 35.016999999999996
69
+ - type: map_at_5
70
+ value: 37.99
71
+ - type: mrr_at_1
72
+ value: 25.605
73
+ - type: mrr_at_10
74
+ value: 40.422000000000004
75
+ - type: mrr_at_100
76
+ value: 41.507
77
+ - type: mrr_at_1000
78
+ value: 41.516
79
+ - type: mrr_at_3
80
+ value: 35.23
81
+ - type: mrr_at_5
82
+ value: 38.15
83
+ - type: ndcg_at_1
84
+ value: 25.178
85
+ - type: ndcg_at_10
86
+ value: 49.258
87
+ - type: ndcg_at_100
88
+ value: 53.776
89
+ - type: ndcg_at_1000
90
+ value: 53.995000000000005
91
+ - type: ndcg_at_3
92
+ value: 38.429
93
+ - type: ndcg_at_5
94
+ value: 43.803
95
+ - type: precision_at_1
96
+ value: 25.178
97
+ - type: precision_at_10
98
+ value: 7.831
99
+ - type: precision_at_100
100
+ value: 0.979
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 16.121
105
+ - type: precision_at_5
106
+ value: 12.29
107
+ - type: recall_at_1
108
+ value: 25.178
109
+ - type: recall_at_10
110
+ value: 78.307
111
+ - type: recall_at_100
112
+ value: 97.866
113
+ - type: recall_at_1000
114
+ value: 99.57300000000001
115
+ - type: recall_at_3
116
+ value: 48.364000000000004
117
+ - type: recall_at_5
118
+ value: 61.451
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 45.93034494751465
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 36.64579480054327
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 60.601310529222054
152
+ - type: mrr
153
+ value: 75.04484896451656
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 88.57797718095814
165
+ - type: cos_sim_spearman
166
+ value: 86.47064499110101
167
+ - type: euclidean_pearson
168
+ value: 87.4559602783142
169
+ - type: euclidean_spearman
170
+ value: 86.47064499110101
171
+ - type: manhattan_pearson
172
+ value: 87.7232764230245
173
+ - type: manhattan_spearman
174
+ value: 86.91222131777742
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 84.5422077922078
186
+ - type: f1
187
+ value: 84.47657456950589
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 38.48953561974464
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 32.75995857510105
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 30.008000000000003
221
+ - type: map_at_10
222
+ value: 39.51
223
+ - type: map_at_100
224
+ value: 40.841
225
+ - type: map_at_1000
226
+ value: 40.973
227
+ - type: map_at_3
228
+ value: 36.248999999999995
229
+ - type: map_at_5
230
+ value: 38.096999999999994
231
+ - type: mrr_at_1
232
+ value: 36.481
233
+ - type: mrr_at_10
234
+ value: 44.818000000000005
235
+ - type: mrr_at_100
236
+ value: 45.64
237
+ - type: mrr_at_1000
238
+ value: 45.687
239
+ - type: mrr_at_3
240
+ value: 42.036
241
+ - type: mrr_at_5
242
+ value: 43.782
243
+ - type: ndcg_at_1
244
+ value: 36.481
245
+ - type: ndcg_at_10
246
+ value: 45.152
247
+ - type: ndcg_at_100
248
+ value: 50.449
249
+ - type: ndcg_at_1000
250
+ value: 52.76499999999999
251
+ - type: ndcg_at_3
252
+ value: 40.161
253
+ - type: ndcg_at_5
254
+ value: 42.577999999999996
255
+ - type: precision_at_1
256
+ value: 36.481
257
+ - type: precision_at_10
258
+ value: 8.369
259
+ - type: precision_at_100
260
+ value: 1.373
261
+ - type: precision_at_1000
262
+ value: 0.186
263
+ - type: precision_at_3
264
+ value: 18.693
265
+ - type: precision_at_5
266
+ value: 13.533999999999999
267
+ - type: recall_at_1
268
+ value: 30.008000000000003
269
+ - type: recall_at_10
270
+ value: 56.108999999999995
271
+ - type: recall_at_100
272
+ value: 78.55499999999999
273
+ - type: recall_at_1000
274
+ value: 93.659
275
+ - type: recall_at_3
276
+ value: 41.754999999999995
277
+ - type: recall_at_5
278
+ value: 48.296
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 30.262
290
+ - type: map_at_10
291
+ value: 40.139
292
+ - type: map_at_100
293
+ value: 41.394
294
+ - type: map_at_1000
295
+ value: 41.526
296
+ - type: map_at_3
297
+ value: 37.155
298
+ - type: map_at_5
299
+ value: 38.785
300
+ - type: mrr_at_1
301
+ value: 38.153
302
+ - type: mrr_at_10
303
+ value: 46.369
304
+ - type: mrr_at_100
305
+ value: 47.072
306
+ - type: mrr_at_1000
307
+ value: 47.111999999999995
308
+ - type: mrr_at_3
309
+ value: 44.268
310
+ - type: mrr_at_5
311
+ value: 45.389
312
+ - type: ndcg_at_1
313
+ value: 38.153
314
+ - type: ndcg_at_10
315
+ value: 45.925
316
+ - type: ndcg_at_100
317
+ value: 50.394000000000005
318
+ - type: ndcg_at_1000
319
+ value: 52.37500000000001
320
+ - type: ndcg_at_3
321
+ value: 41.754000000000005
322
+ - type: ndcg_at_5
323
+ value: 43.574
324
+ - type: precision_at_1
325
+ value: 38.153
326
+ - type: precision_at_10
327
+ value: 8.796
328
+ - type: precision_at_100
329
+ value: 1.432
330
+ - type: precision_at_1000
331
+ value: 0.189
332
+ - type: precision_at_3
333
+ value: 20.318
334
+ - type: precision_at_5
335
+ value: 14.395
336
+ - type: recall_at_1
337
+ value: 30.262
338
+ - type: recall_at_10
339
+ value: 55.72200000000001
340
+ - type: recall_at_100
341
+ value: 74.97500000000001
342
+ - type: recall_at_1000
343
+ value: 87.342
344
+ - type: recall_at_3
345
+ value: 43.129
346
+ - type: recall_at_5
347
+ value: 48.336
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 39.951
359
+ - type: map_at_10
360
+ value: 51.248000000000005
361
+ - type: map_at_100
362
+ value: 52.188
363
+ - type: map_at_1000
364
+ value: 52.247
365
+ - type: map_at_3
366
+ value: 48.211
367
+ - type: map_at_5
368
+ value: 49.797000000000004
369
+ - type: mrr_at_1
370
+ value: 45.329
371
+ - type: mrr_at_10
372
+ value: 54.749
373
+ - type: mrr_at_100
374
+ value: 55.367999999999995
375
+ - type: mrr_at_1000
376
+ value: 55.400000000000006
377
+ - type: mrr_at_3
378
+ value: 52.382
379
+ - type: mrr_at_5
380
+ value: 53.649
381
+ - type: ndcg_at_1
382
+ value: 45.329
383
+ - type: ndcg_at_10
384
+ value: 56.847
385
+ - type: ndcg_at_100
386
+ value: 60.738
387
+ - type: ndcg_at_1000
388
+ value: 61.976
389
+ - type: ndcg_at_3
390
+ value: 51.59
391
+ - type: ndcg_at_5
392
+ value: 53.915
393
+ - type: precision_at_1
394
+ value: 45.329
395
+ - type: precision_at_10
396
+ value: 8.959
397
+ - type: precision_at_100
398
+ value: 1.187
399
+ - type: precision_at_1000
400
+ value: 0.134
401
+ - type: precision_at_3
402
+ value: 22.612
403
+ - type: precision_at_5
404
+ value: 15.273
405
+ - type: recall_at_1
406
+ value: 39.951
407
+ - type: recall_at_10
408
+ value: 70.053
409
+ - type: recall_at_100
410
+ value: 86.996
411
+ - type: recall_at_1000
412
+ value: 95.707
413
+ - type: recall_at_3
414
+ value: 56.032000000000004
415
+ - type: recall_at_5
416
+ value: 61.629999999999995
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 25.566
428
+ - type: map_at_10
429
+ value: 33.207
430
+ - type: map_at_100
431
+ value: 34.166000000000004
432
+ - type: map_at_1000
433
+ value: 34.245
434
+ - type: map_at_3
435
+ value: 30.94
436
+ - type: map_at_5
437
+ value: 32.01
438
+ - type: mrr_at_1
439
+ value: 27.345000000000002
440
+ - type: mrr_at_10
441
+ value: 35.193000000000005
442
+ - type: mrr_at_100
443
+ value: 35.965
444
+ - type: mrr_at_1000
445
+ value: 36.028999999999996
446
+ - type: mrr_at_3
447
+ value: 32.806000000000004
448
+ - type: mrr_at_5
449
+ value: 34.021
450
+ - type: ndcg_at_1
451
+ value: 27.345000000000002
452
+ - type: ndcg_at_10
453
+ value: 37.891999999999996
454
+ - type: ndcg_at_100
455
+ value: 42.664
456
+ - type: ndcg_at_1000
457
+ value: 44.757000000000005
458
+ - type: ndcg_at_3
459
+ value: 33.123000000000005
460
+ - type: ndcg_at_5
461
+ value: 35.035
462
+ - type: precision_at_1
463
+ value: 27.345000000000002
464
+ - type: precision_at_10
465
+ value: 5.763
466
+ - type: precision_at_100
467
+ value: 0.859
468
+ - type: precision_at_1000
469
+ value: 0.108
470
+ - type: precision_at_3
471
+ value: 13.71
472
+ - type: precision_at_5
473
+ value: 9.401
474
+ - type: recall_at_1
475
+ value: 25.566
476
+ - type: recall_at_10
477
+ value: 50.563
478
+ - type: recall_at_100
479
+ value: 72.86399999999999
480
+ - type: recall_at_1000
481
+ value: 88.68599999999999
482
+ - type: recall_at_3
483
+ value: 37.43
484
+ - type: recall_at_5
485
+ value: 41.894999999999996
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 16.663
497
+ - type: map_at_10
498
+ value: 23.552
499
+ - type: map_at_100
500
+ value: 24.538
501
+ - type: map_at_1000
502
+ value: 24.661
503
+ - type: map_at_3
504
+ value: 21.085
505
+ - type: map_at_5
506
+ value: 22.391
507
+ - type: mrr_at_1
508
+ value: 20.025000000000002
509
+ - type: mrr_at_10
510
+ value: 27.643
511
+ - type: mrr_at_100
512
+ value: 28.499999999999996
513
+ - type: mrr_at_1000
514
+ value: 28.582
515
+ - type: mrr_at_3
516
+ value: 25.083
517
+ - type: mrr_at_5
518
+ value: 26.544
519
+ - type: ndcg_at_1
520
+ value: 20.025000000000002
521
+ - type: ndcg_at_10
522
+ value: 28.272000000000002
523
+ - type: ndcg_at_100
524
+ value: 33.353
525
+ - type: ndcg_at_1000
526
+ value: 36.454
527
+ - type: ndcg_at_3
528
+ value: 23.579
529
+ - type: ndcg_at_5
530
+ value: 25.685000000000002
531
+ - type: precision_at_1
532
+ value: 20.025000000000002
533
+ - type: precision_at_10
534
+ value: 5.187
535
+ - type: precision_at_100
536
+ value: 0.897
537
+ - type: precision_at_1000
538
+ value: 0.13
539
+ - type: precision_at_3
540
+ value: 10.987
541
+ - type: precision_at_5
542
+ value: 8.06
543
+ - type: recall_at_1
544
+ value: 16.663
545
+ - type: recall_at_10
546
+ value: 38.808
547
+ - type: recall_at_100
548
+ value: 61.305
549
+ - type: recall_at_1000
550
+ value: 83.571
551
+ - type: recall_at_3
552
+ value: 25.907999999999998
553
+ - type: recall_at_5
554
+ value: 31.214
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 27.695999999999998
566
+ - type: map_at_10
567
+ value: 37.018
568
+ - type: map_at_100
569
+ value: 38.263000000000005
570
+ - type: map_at_1000
571
+ value: 38.371
572
+ - type: map_at_3
573
+ value: 34.226
574
+ - type: map_at_5
575
+ value: 35.809999999999995
576
+ - type: mrr_at_1
577
+ value: 32.916000000000004
578
+ - type: mrr_at_10
579
+ value: 42.067
580
+ - type: mrr_at_100
581
+ value: 42.925000000000004
582
+ - type: mrr_at_1000
583
+ value: 42.978
584
+ - type: mrr_at_3
585
+ value: 39.637
586
+ - type: mrr_at_5
587
+ value: 41.134
588
+ - type: ndcg_at_1
589
+ value: 32.916000000000004
590
+ - type: ndcg_at_10
591
+ value: 42.539
592
+ - type: ndcg_at_100
593
+ value: 47.873
594
+ - type: ndcg_at_1000
595
+ value: 50.08200000000001
596
+ - type: ndcg_at_3
597
+ value: 37.852999999999994
598
+ - type: ndcg_at_5
599
+ value: 40.201
600
+ - type: precision_at_1
601
+ value: 32.916000000000004
602
+ - type: precision_at_10
603
+ value: 7.5840000000000005
604
+ - type: precision_at_100
605
+ value: 1.199
606
+ - type: precision_at_1000
607
+ value: 0.155
608
+ - type: precision_at_3
609
+ value: 17.485
610
+ - type: precision_at_5
611
+ value: 12.512
612
+ - type: recall_at_1
613
+ value: 27.695999999999998
614
+ - type: recall_at_10
615
+ value: 53.638
616
+ - type: recall_at_100
617
+ value: 76.116
618
+ - type: recall_at_1000
619
+ value: 91.069
620
+ - type: recall_at_3
621
+ value: 41.13
622
+ - type: recall_at_5
623
+ value: 46.872
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 24.108
635
+ - type: map_at_10
636
+ value: 33.372
637
+ - type: map_at_100
638
+ value: 34.656
639
+ - type: map_at_1000
640
+ value: 34.768
641
+ - type: map_at_3
642
+ value: 30.830999999999996
643
+ - type: map_at_5
644
+ value: 32.204
645
+ - type: mrr_at_1
646
+ value: 29.110000000000003
647
+ - type: mrr_at_10
648
+ value: 37.979
649
+ - type: mrr_at_100
650
+ value: 38.933
651
+ - type: mrr_at_1000
652
+ value: 38.988
653
+ - type: mrr_at_3
654
+ value: 35.731
655
+ - type: mrr_at_5
656
+ value: 36.963
657
+ - type: ndcg_at_1
658
+ value: 29.110000000000003
659
+ - type: ndcg_at_10
660
+ value: 38.635000000000005
661
+ - type: ndcg_at_100
662
+ value: 44.324999999999996
663
+ - type: ndcg_at_1000
664
+ value: 46.747
665
+ - type: ndcg_at_3
666
+ value: 34.37
667
+ - type: ndcg_at_5
668
+ value: 36.228
669
+ - type: precision_at_1
670
+ value: 29.110000000000003
671
+ - type: precision_at_10
672
+ value: 6.963
673
+ - type: precision_at_100
674
+ value: 1.146
675
+ - type: precision_at_1000
676
+ value: 0.152
677
+ - type: precision_at_3
678
+ value: 16.400000000000002
679
+ - type: precision_at_5
680
+ value: 11.552999999999999
681
+ - type: recall_at_1
682
+ value: 24.108
683
+ - type: recall_at_10
684
+ value: 49.597
685
+ - type: recall_at_100
686
+ value: 73.88900000000001
687
+ - type: recall_at_1000
688
+ value: 90.62400000000001
689
+ - type: recall_at_3
690
+ value: 37.662
691
+ - type: recall_at_5
692
+ value: 42.565
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 25.00791666666667
704
+ - type: map_at_10
705
+ value: 33.287749999999996
706
+ - type: map_at_100
707
+ value: 34.41141666666667
708
+ - type: map_at_1000
709
+ value: 34.52583333333333
710
+ - type: map_at_3
711
+ value: 30.734416666666668
712
+ - type: map_at_5
713
+ value: 32.137166666666666
714
+ - type: mrr_at_1
715
+ value: 29.305666666666664
716
+ - type: mrr_at_10
717
+ value: 37.22966666666666
718
+ - type: mrr_at_100
719
+ value: 38.066583333333334
720
+ - type: mrr_at_1000
721
+ value: 38.12616666666667
722
+ - type: mrr_at_3
723
+ value: 34.92275
724
+ - type: mrr_at_5
725
+ value: 36.23333333333334
726
+ - type: ndcg_at_1
727
+ value: 29.305666666666664
728
+ - type: ndcg_at_10
729
+ value: 38.25533333333333
730
+ - type: ndcg_at_100
731
+ value: 43.25266666666666
732
+ - type: ndcg_at_1000
733
+ value: 45.63583333333334
734
+ - type: ndcg_at_3
735
+ value: 33.777166666666666
736
+ - type: ndcg_at_5
737
+ value: 35.85
738
+ - type: precision_at_1
739
+ value: 29.305666666666664
740
+ - type: precision_at_10
741
+ value: 6.596416666666667
742
+ - type: precision_at_100
743
+ value: 1.0784166666666668
744
+ - type: precision_at_1000
745
+ value: 0.14666666666666664
746
+ - type: precision_at_3
747
+ value: 15.31075
748
+ - type: precision_at_5
749
+ value: 10.830916666666667
750
+ - type: recall_at_1
751
+ value: 25.00791666666667
752
+ - type: recall_at_10
753
+ value: 49.10933333333333
754
+ - type: recall_at_100
755
+ value: 71.09216666666667
756
+ - type: recall_at_1000
757
+ value: 87.77725000000001
758
+ - type: recall_at_3
759
+ value: 36.660916666666665
760
+ - type: recall_at_5
761
+ value: 41.94149999999999
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 23.521
773
+ - type: map_at_10
774
+ value: 30.043
775
+ - type: map_at_100
776
+ value: 30.936000000000003
777
+ - type: map_at_1000
778
+ value: 31.022
779
+ - type: map_at_3
780
+ value: 27.926000000000002
781
+ - type: map_at_5
782
+ value: 29.076999999999998
783
+ - type: mrr_at_1
784
+ value: 26.227
785
+ - type: mrr_at_10
786
+ value: 32.822
787
+ - type: mrr_at_100
788
+ value: 33.61
789
+ - type: mrr_at_1000
790
+ value: 33.672000000000004
791
+ - type: mrr_at_3
792
+ value: 30.776999999999997
793
+ - type: mrr_at_5
794
+ value: 31.866
795
+ - type: ndcg_at_1
796
+ value: 26.227
797
+ - type: ndcg_at_10
798
+ value: 34.041
799
+ - type: ndcg_at_100
800
+ value: 38.394
801
+ - type: ndcg_at_1000
802
+ value: 40.732
803
+ - type: ndcg_at_3
804
+ value: 30.037999999999997
805
+ - type: ndcg_at_5
806
+ value: 31.845000000000002
807
+ - type: precision_at_1
808
+ value: 26.227
809
+ - type: precision_at_10
810
+ value: 5.244999999999999
811
+ - type: precision_at_100
812
+ value: 0.808
813
+ - type: precision_at_1000
814
+ value: 0.107
815
+ - type: precision_at_3
816
+ value: 12.679000000000002
817
+ - type: precision_at_5
818
+ value: 8.773
819
+ - type: recall_at_1
820
+ value: 23.521
821
+ - type: recall_at_10
822
+ value: 43.633
823
+ - type: recall_at_100
824
+ value: 63.126000000000005
825
+ - type: recall_at_1000
826
+ value: 80.765
827
+ - type: recall_at_3
828
+ value: 32.614
829
+ - type: recall_at_5
830
+ value: 37.15
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 16.236
842
+ - type: map_at_10
843
+ value: 22.898
844
+ - type: map_at_100
845
+ value: 23.878
846
+ - type: map_at_1000
847
+ value: 24.009
848
+ - type: map_at_3
849
+ value: 20.87
850
+ - type: map_at_5
851
+ value: 22.025
852
+ - type: mrr_at_1
853
+ value: 19.339000000000002
854
+ - type: mrr_at_10
855
+ value: 26.382
856
+ - type: mrr_at_100
857
+ value: 27.245
858
+ - type: mrr_at_1000
859
+ value: 27.33
860
+ - type: mrr_at_3
861
+ value: 24.386
862
+ - type: mrr_at_5
863
+ value: 25.496000000000002
864
+ - type: ndcg_at_1
865
+ value: 19.339000000000002
866
+ - type: ndcg_at_10
867
+ value: 27.139999999999997
868
+ - type: ndcg_at_100
869
+ value: 31.944
870
+ - type: ndcg_at_1000
871
+ value: 35.077999999999996
872
+ - type: ndcg_at_3
873
+ value: 23.424
874
+ - type: ndcg_at_5
875
+ value: 25.188
876
+ - type: precision_at_1
877
+ value: 19.339000000000002
878
+ - type: precision_at_10
879
+ value: 4.8309999999999995
880
+ - type: precision_at_100
881
+ value: 0.845
882
+ - type: precision_at_1000
883
+ value: 0.128
884
+ - type: precision_at_3
885
+ value: 10.874
886
+ - type: precision_at_5
887
+ value: 7.825
888
+ - type: recall_at_1
889
+ value: 16.236
890
+ - type: recall_at_10
891
+ value: 36.513
892
+ - type: recall_at_100
893
+ value: 57.999
894
+ - type: recall_at_1000
895
+ value: 80.512
896
+ - type: recall_at_3
897
+ value: 26.179999999999996
898
+ - type: recall_at_5
899
+ value: 30.712
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 24.11
911
+ - type: map_at_10
912
+ value: 31.566
913
+ - type: map_at_100
914
+ value: 32.647
915
+ - type: map_at_1000
916
+ value: 32.753
917
+ - type: map_at_3
918
+ value: 29.24
919
+ - type: map_at_5
920
+ value: 30.564999999999998
921
+ - type: mrr_at_1
922
+ value: 28.265
923
+ - type: mrr_at_10
924
+ value: 35.504000000000005
925
+ - type: mrr_at_100
926
+ value: 36.436
927
+ - type: mrr_at_1000
928
+ value: 36.503
929
+ - type: mrr_at_3
930
+ value: 33.349000000000004
931
+ - type: mrr_at_5
932
+ value: 34.622
933
+ - type: ndcg_at_1
934
+ value: 28.265
935
+ - type: ndcg_at_10
936
+ value: 36.192
937
+ - type: ndcg_at_100
938
+ value: 41.388000000000005
939
+ - type: ndcg_at_1000
940
+ value: 43.948
941
+ - type: ndcg_at_3
942
+ value: 31.959
943
+ - type: ndcg_at_5
944
+ value: 33.998
945
+ - type: precision_at_1
946
+ value: 28.265
947
+ - type: precision_at_10
948
+ value: 5.989
949
+ - type: precision_at_100
950
+ value: 0.9650000000000001
951
+ - type: precision_at_1000
952
+ value: 0.13
953
+ - type: precision_at_3
954
+ value: 14.335
955
+ - type: precision_at_5
956
+ value: 10.112
957
+ - type: recall_at_1
958
+ value: 24.11
959
+ - type: recall_at_10
960
+ value: 46.418
961
+ - type: recall_at_100
962
+ value: 69.314
963
+ - type: recall_at_1000
964
+ value: 87.397
965
+ - type: recall_at_3
966
+ value: 34.724
967
+ - type: recall_at_5
968
+ value: 39.925
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 22.091
980
+ - type: map_at_10
981
+ value: 29.948999999999998
982
+ - type: map_at_100
983
+ value: 31.502000000000002
984
+ - type: map_at_1000
985
+ value: 31.713
986
+ - type: map_at_3
987
+ value: 27.464
988
+ - type: map_at_5
989
+ value: 28.968
990
+ - type: mrr_at_1
991
+ value: 26.482
992
+ - type: mrr_at_10
993
+ value: 34.009
994
+ - type: mrr_at_100
995
+ value: 35.081
996
+ - type: mrr_at_1000
997
+ value: 35.138000000000005
998
+ - type: mrr_at_3
999
+ value: 31.785000000000004
1000
+ - type: mrr_at_5
1001
+ value: 33.178999999999995
1002
+ - type: ndcg_at_1
1003
+ value: 26.482
1004
+ - type: ndcg_at_10
1005
+ value: 35.008
1006
+ - type: ndcg_at_100
1007
+ value: 41.272999999999996
1008
+ - type: ndcg_at_1000
1009
+ value: 43.972
1010
+ - type: ndcg_at_3
1011
+ value: 30.804
1012
+ - type: ndcg_at_5
1013
+ value: 33.046
1014
+ - type: precision_at_1
1015
+ value: 26.482
1016
+ - type: precision_at_10
1017
+ value: 6.462
1018
+ - type: precision_at_100
1019
+ value: 1.431
1020
+ - type: precision_at_1000
1021
+ value: 0.22899999999999998
1022
+ - type: precision_at_3
1023
+ value: 14.360999999999999
1024
+ - type: precision_at_5
1025
+ value: 10.474
1026
+ - type: recall_at_1
1027
+ value: 22.091
1028
+ - type: recall_at_10
1029
+ value: 45.125
1030
+ - type: recall_at_100
1031
+ value: 72.313
1032
+ - type: recall_at_1000
1033
+ value: 89.503
1034
+ - type: recall_at_3
1035
+ value: 33.158
1036
+ - type: recall_at_5
1037
+ value: 39.086999999999996
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 19.883
1049
+ - type: map_at_10
1050
+ value: 26.951000000000004
1051
+ - type: map_at_100
1052
+ value: 27.927999999999997
1053
+ - type: map_at_1000
1054
+ value: 28.022000000000002
1055
+ - type: map_at_3
1056
+ value: 24.616
1057
+ - type: map_at_5
1058
+ value: 25.917
1059
+ - type: mrr_at_1
1060
+ value: 21.996
1061
+ - type: mrr_at_10
1062
+ value: 29.221000000000004
1063
+ - type: mrr_at_100
1064
+ value: 30.024
1065
+ - type: mrr_at_1000
1066
+ value: 30.095
1067
+ - type: mrr_at_3
1068
+ value: 26.833000000000002
1069
+ - type: mrr_at_5
1070
+ value: 28.155
1071
+ - type: ndcg_at_1
1072
+ value: 21.996
1073
+ - type: ndcg_at_10
1074
+ value: 31.421
1075
+ - type: ndcg_at_100
1076
+ value: 36.237
1077
+ - type: ndcg_at_1000
1078
+ value: 38.744
1079
+ - type: ndcg_at_3
1080
+ value: 26.671
1081
+ - type: ndcg_at_5
1082
+ value: 28.907
1083
+ - type: precision_at_1
1084
+ value: 21.996
1085
+ - type: precision_at_10
1086
+ value: 5.009
1087
+ - type: precision_at_100
1088
+ value: 0.799
1089
+ - type: precision_at_1000
1090
+ value: 0.11199999999999999
1091
+ - type: precision_at_3
1092
+ value: 11.275
1093
+ - type: precision_at_5
1094
+ value: 8.059
1095
+ - type: recall_at_1
1096
+ value: 19.883
1097
+ - type: recall_at_10
1098
+ value: 43.132999999999996
1099
+ - type: recall_at_100
1100
+ value: 65.654
1101
+ - type: recall_at_1000
1102
+ value: 84.492
1103
+ - type: recall_at_3
1104
+ value: 30.209000000000003
1105
+ - type: recall_at_5
1106
+ value: 35.616
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 17.756
1118
+ - type: map_at_10
1119
+ value: 30.378
1120
+ - type: map_at_100
1121
+ value: 32.537
1122
+ - type: map_at_1000
1123
+ value: 32.717
1124
+ - type: map_at_3
1125
+ value: 25.599
1126
+ - type: map_at_5
1127
+ value: 28.372999999999998
1128
+ - type: mrr_at_1
1129
+ value: 41.303
1130
+ - type: mrr_at_10
1131
+ value: 53.483999999999995
1132
+ - type: mrr_at_100
1133
+ value: 54.106
1134
+ - type: mrr_at_1000
1135
+ value: 54.127
1136
+ - type: mrr_at_3
1137
+ value: 50.315
1138
+ - type: mrr_at_5
1139
+ value: 52.396
1140
+ - type: ndcg_at_1
1141
+ value: 41.303
1142
+ - type: ndcg_at_10
1143
+ value: 40.503
1144
+ - type: ndcg_at_100
1145
+ value: 47.821000000000005
1146
+ - type: ndcg_at_1000
1147
+ value: 50.788
1148
+ - type: ndcg_at_3
1149
+ value: 34.364
1150
+ - type: ndcg_at_5
1151
+ value: 36.818
1152
+ - type: precision_at_1
1153
+ value: 41.303
1154
+ - type: precision_at_10
1155
+ value: 12.463000000000001
1156
+ - type: precision_at_100
1157
+ value: 2.037
1158
+ - type: precision_at_1000
1159
+ value: 0.26
1160
+ - type: precision_at_3
1161
+ value: 25.798
1162
+ - type: precision_at_5
1163
+ value: 19.896
1164
+ - type: recall_at_1
1165
+ value: 17.756
1166
+ - type: recall_at_10
1167
+ value: 46.102
1168
+ - type: recall_at_100
1169
+ value: 70.819
1170
+ - type: recall_at_1000
1171
+ value: 87.21799999999999
1172
+ - type: recall_at_3
1173
+ value: 30.646
1174
+ - type: recall_at_5
1175
+ value: 38.022
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 9.033
1187
+ - type: map_at_10
1188
+ value: 20.584
1189
+ - type: map_at_100
1190
+ value: 29.518
1191
+ - type: map_at_1000
1192
+ value: 31.186000000000003
1193
+ - type: map_at_3
1194
+ value: 14.468
1195
+ - type: map_at_5
1196
+ value: 17.177
1197
+ - type: mrr_at_1
1198
+ value: 69.75
1199
+ - type: mrr_at_10
1200
+ value: 77.025
1201
+ - type: mrr_at_100
1202
+ value: 77.36699999999999
1203
+ - type: mrr_at_1000
1204
+ value: 77.373
1205
+ - type: mrr_at_3
1206
+ value: 75.583
1207
+ - type: mrr_at_5
1208
+ value: 76.396
1209
+ - type: ndcg_at_1
1210
+ value: 58.5
1211
+ - type: ndcg_at_10
1212
+ value: 45.033
1213
+ - type: ndcg_at_100
1214
+ value: 49.071
1215
+ - type: ndcg_at_1000
1216
+ value: 56.056
1217
+ - type: ndcg_at_3
1218
+ value: 49.936
1219
+ - type: ndcg_at_5
1220
+ value: 47.471999999999994
1221
+ - type: precision_at_1
1222
+ value: 69.75
1223
+ - type: precision_at_10
1224
+ value: 35.775
1225
+ - type: precision_at_100
1226
+ value: 11.594999999999999
1227
+ - type: precision_at_1000
1228
+ value: 2.062
1229
+ - type: precision_at_3
1230
+ value: 52.5
1231
+ - type: precision_at_5
1232
+ value: 45.300000000000004
1233
+ - type: recall_at_1
1234
+ value: 9.033
1235
+ - type: recall_at_10
1236
+ value: 26.596999999999998
1237
+ - type: recall_at_100
1238
+ value: 54.607000000000006
1239
+ - type: recall_at_1000
1240
+ value: 76.961
1241
+ - type: recall_at_3
1242
+ value: 15.754999999999999
1243
+ - type: recall_at_5
1244
+ value: 20.033
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 48.345000000000006
1256
+ - type: f1
1257
+ value: 43.4514918068706
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 71.29100000000001
1269
+ - type: map_at_10
1270
+ value: 81.059
1271
+ - type: map_at_100
1272
+ value: 81.341
1273
+ - type: map_at_1000
1274
+ value: 81.355
1275
+ - type: map_at_3
1276
+ value: 79.74799999999999
1277
+ - type: map_at_5
1278
+ value: 80.612
1279
+ - type: mrr_at_1
1280
+ value: 76.40299999999999
1281
+ - type: mrr_at_10
1282
+ value: 84.615
1283
+ - type: mrr_at_100
1284
+ value: 84.745
1285
+ - type: mrr_at_1000
1286
+ value: 84.748
1287
+ - type: mrr_at_3
1288
+ value: 83.776
1289
+ - type: mrr_at_5
1290
+ value: 84.343
1291
+ - type: ndcg_at_1
1292
+ value: 76.40299999999999
1293
+ - type: ndcg_at_10
1294
+ value: 84.981
1295
+ - type: ndcg_at_100
1296
+ value: 86.00999999999999
1297
+ - type: ndcg_at_1000
1298
+ value: 86.252
1299
+ - type: ndcg_at_3
1300
+ value: 82.97
1301
+ - type: ndcg_at_5
1302
+ value: 84.152
1303
+ - type: precision_at_1
1304
+ value: 76.40299999999999
1305
+ - type: precision_at_10
1306
+ value: 10.446
1307
+ - type: precision_at_100
1308
+ value: 1.1199999999999999
1309
+ - type: precision_at_1000
1310
+ value: 0.116
1311
+ - type: precision_at_3
1312
+ value: 32.147999999999996
1313
+ - type: precision_at_5
1314
+ value: 20.135
1315
+ - type: recall_at_1
1316
+ value: 71.29100000000001
1317
+ - type: recall_at_10
1318
+ value: 93.232
1319
+ - type: recall_at_100
1320
+ value: 97.363
1321
+ - type: recall_at_1000
1322
+ value: 98.905
1323
+ - type: recall_at_3
1324
+ value: 87.893
1325
+ - type: recall_at_5
1326
+ value: 90.804
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 18.667
1338
+ - type: map_at_10
1339
+ value: 30.853
1340
+ - type: map_at_100
1341
+ value: 32.494
1342
+ - type: map_at_1000
1343
+ value: 32.677
1344
+ - type: map_at_3
1345
+ value: 26.91
1346
+ - type: map_at_5
1347
+ value: 29.099000000000004
1348
+ - type: mrr_at_1
1349
+ value: 37.191
1350
+ - type: mrr_at_10
1351
+ value: 46.171
1352
+ - type: mrr_at_100
1353
+ value: 47.056
1354
+ - type: mrr_at_1000
1355
+ value: 47.099000000000004
1356
+ - type: mrr_at_3
1357
+ value: 44.059
1358
+ - type: mrr_at_5
1359
+ value: 45.147
1360
+ - type: ndcg_at_1
1361
+ value: 37.191
1362
+ - type: ndcg_at_10
1363
+ value: 38.437
1364
+ - type: ndcg_at_100
1365
+ value: 44.62
1366
+ - type: ndcg_at_1000
1367
+ value: 47.795
1368
+ - type: ndcg_at_3
1369
+ value: 35.003
1370
+ - type: ndcg_at_5
1371
+ value: 36.006
1372
+ - type: precision_at_1
1373
+ value: 37.191
1374
+ - type: precision_at_10
1375
+ value: 10.586
1376
+ - type: precision_at_100
1377
+ value: 1.688
1378
+ - type: precision_at_1000
1379
+ value: 0.22699999999999998
1380
+ - type: precision_at_3
1381
+ value: 23.302
1382
+ - type: precision_at_5
1383
+ value: 17.006
1384
+ - type: recall_at_1
1385
+ value: 18.667
1386
+ - type: recall_at_10
1387
+ value: 45.367000000000004
1388
+ - type: recall_at_100
1389
+ value: 68.207
1390
+ - type: recall_at_1000
1391
+ value: 87.072
1392
+ - type: recall_at_3
1393
+ value: 32.129000000000005
1394
+ - type: recall_at_5
1395
+ value: 37.719
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 39.494
1407
+ - type: map_at_10
1408
+ value: 66.223
1409
+ - type: map_at_100
1410
+ value: 67.062
1411
+ - type: map_at_1000
1412
+ value: 67.11500000000001
1413
+ - type: map_at_3
1414
+ value: 62.867
1415
+ - type: map_at_5
1416
+ value: 64.994
1417
+ - type: mrr_at_1
1418
+ value: 78.987
1419
+ - type: mrr_at_10
1420
+ value: 84.585
1421
+ - type: mrr_at_100
1422
+ value: 84.773
1423
+ - type: mrr_at_1000
1424
+ value: 84.77900000000001
1425
+ - type: mrr_at_3
1426
+ value: 83.592
1427
+ - type: mrr_at_5
1428
+ value: 84.235
1429
+ - type: ndcg_at_1
1430
+ value: 78.987
1431
+ - type: ndcg_at_10
1432
+ value: 73.64
1433
+ - type: ndcg_at_100
1434
+ value: 76.519
1435
+ - type: ndcg_at_1000
1436
+ value: 77.51
1437
+ - type: ndcg_at_3
1438
+ value: 68.893
1439
+ - type: ndcg_at_5
1440
+ value: 71.585
1441
+ - type: precision_at_1
1442
+ value: 78.987
1443
+ - type: precision_at_10
1444
+ value: 15.529000000000002
1445
+ - type: precision_at_100
1446
+ value: 1.7770000000000001
1447
+ - type: precision_at_1000
1448
+ value: 0.191
1449
+ - type: precision_at_3
1450
+ value: 44.808
1451
+ - type: precision_at_5
1452
+ value: 29.006999999999998
1453
+ - type: recall_at_1
1454
+ value: 39.494
1455
+ - type: recall_at_10
1456
+ value: 77.643
1457
+ - type: recall_at_100
1458
+ value: 88.825
1459
+ - type: recall_at_1000
1460
+ value: 95.321
1461
+ - type: recall_at_3
1462
+ value: 67.211
1463
+ - type: recall_at_5
1464
+ value: 72.519
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 85.55959999999999
1476
+ - type: ap
1477
+ value: 80.7246500384617
1478
+ - type: f1
1479
+ value: 85.52336485065454
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 23.631
1491
+ - type: map_at_10
1492
+ value: 36.264
1493
+ - type: map_at_100
1494
+ value: 37.428
1495
+ - type: map_at_1000
1496
+ value: 37.472
1497
+ - type: map_at_3
1498
+ value: 32.537
1499
+ - type: map_at_5
1500
+ value: 34.746
1501
+ - type: mrr_at_1
1502
+ value: 24.312
1503
+ - type: mrr_at_10
1504
+ value: 36.858000000000004
1505
+ - type: mrr_at_100
1506
+ value: 37.966
1507
+ - type: mrr_at_1000
1508
+ value: 38.004
1509
+ - type: mrr_at_3
1510
+ value: 33.188
1511
+ - type: mrr_at_5
1512
+ value: 35.367
1513
+ - type: ndcg_at_1
1514
+ value: 24.312
1515
+ - type: ndcg_at_10
1516
+ value: 43.126999999999995
1517
+ - type: ndcg_at_100
1518
+ value: 48.642
1519
+ - type: ndcg_at_1000
1520
+ value: 49.741
1521
+ - type: ndcg_at_3
1522
+ value: 35.589
1523
+ - type: ndcg_at_5
1524
+ value: 39.515
1525
+ - type: precision_at_1
1526
+ value: 24.312
1527
+ - type: precision_at_10
1528
+ value: 6.699
1529
+ - type: precision_at_100
1530
+ value: 0.9450000000000001
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 15.153
1535
+ - type: precision_at_5
1536
+ value: 11.065999999999999
1537
+ - type: recall_at_1
1538
+ value: 23.631
1539
+ - type: recall_at_10
1540
+ value: 64.145
1541
+ - type: recall_at_100
1542
+ value: 89.41
1543
+ - type: recall_at_1000
1544
+ value: 97.83500000000001
1545
+ - type: recall_at_3
1546
+ value: 43.769000000000005
1547
+ - type: recall_at_5
1548
+ value: 53.169
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 93.4108527131783
1560
+ - type: f1
1561
+ value: 93.1415880261038
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 77.24806201550388
1573
+ - type: f1
1574
+ value: 60.531916308197175
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 73.71553463349024
1586
+ - type: f1
1587
+ value: 71.70753174900791
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 77.79757901815736
1599
+ - type: f1
1600
+ value: 77.83719850433258
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 33.74193296622113
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 30.64257594108566
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.811018518883625
1634
+ - type: mrr
1635
+ value: 31.910376577445003
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 5.409
1647
+ - type: map_at_10
1648
+ value: 13.093
1649
+ - type: map_at_100
1650
+ value: 16.256999999999998
1651
+ - type: map_at_1000
1652
+ value: 17.617
1653
+ - type: map_at_3
1654
+ value: 9.555
1655
+ - type: map_at_5
1656
+ value: 11.428
1657
+ - type: mrr_at_1
1658
+ value: 45.201
1659
+ - type: mrr_at_10
1660
+ value: 54.179
1661
+ - type: mrr_at_100
1662
+ value: 54.812000000000005
1663
+ - type: mrr_at_1000
1664
+ value: 54.840999999999994
1665
+ - type: mrr_at_3
1666
+ value: 51.909000000000006
1667
+ - type: mrr_at_5
1668
+ value: 53.519000000000005
1669
+ - type: ndcg_at_1
1670
+ value: 43.189
1671
+ - type: ndcg_at_10
1672
+ value: 35.028
1673
+ - type: ndcg_at_100
1674
+ value: 31.226
1675
+ - type: ndcg_at_1000
1676
+ value: 39.678000000000004
1677
+ - type: ndcg_at_3
1678
+ value: 40.596
1679
+ - type: ndcg_at_5
1680
+ value: 38.75
1681
+ - type: precision_at_1
1682
+ value: 44.582
1683
+ - type: precision_at_10
1684
+ value: 25.974999999999998
1685
+ - type: precision_at_100
1686
+ value: 7.793
1687
+ - type: precision_at_1000
1688
+ value: 2.036
1689
+ - type: precision_at_3
1690
+ value: 38.493
1691
+ - type: precision_at_5
1692
+ value: 33.994
1693
+ - type: recall_at_1
1694
+ value: 5.409
1695
+ - type: recall_at_10
1696
+ value: 16.875999999999998
1697
+ - type: recall_at_100
1698
+ value: 30.316
1699
+ - type: recall_at_1000
1700
+ value: 60.891
1701
+ - type: recall_at_3
1702
+ value: 10.688
1703
+ - type: recall_at_5
1704
+ value: 13.832
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 36.375
1716
+ - type: map_at_10
1717
+ value: 51.991
1718
+ - type: map_at_100
1719
+ value: 52.91400000000001
1720
+ - type: map_at_1000
1721
+ value: 52.93600000000001
1722
+ - type: map_at_3
1723
+ value: 48.014
1724
+ - type: map_at_5
1725
+ value: 50.381
1726
+ - type: mrr_at_1
1727
+ value: 40.759
1728
+ - type: mrr_at_10
1729
+ value: 54.617000000000004
1730
+ - type: mrr_at_100
1731
+ value: 55.301
1732
+ - type: mrr_at_1000
1733
+ value: 55.315000000000005
1734
+ - type: mrr_at_3
1735
+ value: 51.516
1736
+ - type: mrr_at_5
1737
+ value: 53.435
1738
+ - type: ndcg_at_1
1739
+ value: 40.759
1740
+ - type: ndcg_at_10
1741
+ value: 59.384
1742
+ - type: ndcg_at_100
1743
+ value: 63.157
1744
+ - type: ndcg_at_1000
1745
+ value: 63.654999999999994
1746
+ - type: ndcg_at_3
1747
+ value: 52.114000000000004
1748
+ - type: ndcg_at_5
1749
+ value: 55.986000000000004
1750
+ - type: precision_at_1
1751
+ value: 40.759
1752
+ - type: precision_at_10
1753
+ value: 9.411999999999999
1754
+ - type: precision_at_100
1755
+ value: 1.153
1756
+ - type: precision_at_1000
1757
+ value: 0.12
1758
+ - type: precision_at_3
1759
+ value: 23.329
1760
+ - type: precision_at_5
1761
+ value: 16.256999999999998
1762
+ - type: recall_at_1
1763
+ value: 36.375
1764
+ - type: recall_at_10
1765
+ value: 79.053
1766
+ - type: recall_at_100
1767
+ value: 95.167
1768
+ - type: recall_at_1000
1769
+ value: 98.82
1770
+ - type: recall_at_3
1771
+ value: 60.475
1772
+ - type: recall_at_5
1773
+ value: 69.327
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 70.256
1785
+ - type: map_at_10
1786
+ value: 83.8
1787
+ - type: map_at_100
1788
+ value: 84.425
1789
+ - type: map_at_1000
1790
+ value: 84.444
1791
+ - type: map_at_3
1792
+ value: 80.906
1793
+ - type: map_at_5
1794
+ value: 82.717
1795
+ - type: mrr_at_1
1796
+ value: 80.97999999999999
1797
+ - type: mrr_at_10
1798
+ value: 87.161
1799
+ - type: mrr_at_100
1800
+ value: 87.262
1801
+ - type: mrr_at_1000
1802
+ value: 87.263
1803
+ - type: mrr_at_3
1804
+ value: 86.175
1805
+ - type: mrr_at_5
1806
+ value: 86.848
1807
+ - type: ndcg_at_1
1808
+ value: 80.97999999999999
1809
+ - type: ndcg_at_10
1810
+ value: 87.697
1811
+ - type: ndcg_at_100
1812
+ value: 88.959
1813
+ - type: ndcg_at_1000
1814
+ value: 89.09899999999999
1815
+ - type: ndcg_at_3
1816
+ value: 84.83800000000001
1817
+ - type: ndcg_at_5
1818
+ value: 86.401
1819
+ - type: precision_at_1
1820
+ value: 80.97999999999999
1821
+ - type: precision_at_10
1822
+ value: 13.261000000000001
1823
+ - type: precision_at_100
1824
+ value: 1.5150000000000001
1825
+ - type: precision_at_1000
1826
+ value: 0.156
1827
+ - type: precision_at_3
1828
+ value: 37.01
1829
+ - type: precision_at_5
1830
+ value: 24.298000000000002
1831
+ - type: recall_at_1
1832
+ value: 70.256
1833
+ - type: recall_at_10
1834
+ value: 94.935
1835
+ - type: recall_at_100
1836
+ value: 99.274
1837
+ - type: recall_at_1000
1838
+ value: 99.928
1839
+ - type: recall_at_3
1840
+ value: 86.602
1841
+ - type: recall_at_5
1842
+ value: 91.133
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 56.322692497613104
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 61.895813503775074
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 4.338
1876
+ - type: map_at_10
1877
+ value: 10.767
1878
+ - type: map_at_100
1879
+ value: 12.537999999999998
1880
+ - type: map_at_1000
1881
+ value: 12.803999999999998
1882
+ - type: map_at_3
1883
+ value: 7.788
1884
+ - type: map_at_5
1885
+ value: 9.302000000000001
1886
+ - type: mrr_at_1
1887
+ value: 21.4
1888
+ - type: mrr_at_10
1889
+ value: 31.637999999999998
1890
+ - type: mrr_at_100
1891
+ value: 32.688
1892
+ - type: mrr_at_1000
1893
+ value: 32.756
1894
+ - type: mrr_at_3
1895
+ value: 28.433000000000003
1896
+ - type: mrr_at_5
1897
+ value: 30.178
1898
+ - type: ndcg_at_1
1899
+ value: 21.4
1900
+ - type: ndcg_at_10
1901
+ value: 18.293
1902
+ - type: ndcg_at_100
1903
+ value: 25.274
1904
+ - type: ndcg_at_1000
1905
+ value: 30.284
1906
+ - type: ndcg_at_3
1907
+ value: 17.391000000000002
1908
+ - type: ndcg_at_5
1909
+ value: 15.146999999999998
1910
+ - type: precision_at_1
1911
+ value: 21.4
1912
+ - type: precision_at_10
1913
+ value: 9.48
1914
+ - type: precision_at_100
1915
+ value: 1.949
1916
+ - type: precision_at_1000
1917
+ value: 0.316
1918
+ - type: precision_at_3
1919
+ value: 16.167
1920
+ - type: precision_at_5
1921
+ value: 13.22
1922
+ - type: recall_at_1
1923
+ value: 4.338
1924
+ - type: recall_at_10
1925
+ value: 19.213
1926
+ - type: recall_at_100
1927
+ value: 39.562999999999995
1928
+ - type: recall_at_1000
1929
+ value: 64.08
1930
+ - type: recall_at_3
1931
+ value: 9.828000000000001
1932
+ - type: recall_at_5
1933
+ value: 13.383000000000001
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 82.42568163642142
1945
+ - type: cos_sim_spearman
1946
+ value: 78.5797159641342
1947
+ - type: euclidean_pearson
1948
+ value: 80.22151260811604
1949
+ - type: euclidean_spearman
1950
+ value: 78.5797151953878
1951
+ - type: manhattan_pearson
1952
+ value: 80.21224215864788
1953
+ - type: manhattan_spearman
1954
+ value: 78.55641478381344
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 85.44020710812569
1966
+ - type: cos_sim_spearman
1967
+ value: 78.91631735081286
1968
+ - type: euclidean_pearson
1969
+ value: 81.64188964182102
1970
+ - type: euclidean_spearman
1971
+ value: 78.91633286881678
1972
+ - type: manhattan_pearson
1973
+ value: 81.69294748512496
1974
+ - type: manhattan_spearman
1975
+ value: 78.93438558002656
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 84.27165426412311
1987
+ - type: cos_sim_spearman
1988
+ value: 85.40429140249618
1989
+ - type: euclidean_pearson
1990
+ value: 84.7509580724893
1991
+ - type: euclidean_spearman
1992
+ value: 85.40429140249618
1993
+ - type: manhattan_pearson
1994
+ value: 84.76488289321308
1995
+ - type: manhattan_spearman
1996
+ value: 85.4256793698708
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 83.138851760732
2008
+ - type: cos_sim_spearman
2009
+ value: 81.64101363896586
2010
+ - type: euclidean_pearson
2011
+ value: 82.55165038934942
2012
+ - type: euclidean_spearman
2013
+ value: 81.64105257080502
2014
+ - type: manhattan_pearson
2015
+ value: 82.52802949883335
2016
+ - type: manhattan_spearman
2017
+ value: 81.61255430718158
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 86.0654695484029
2029
+ - type: cos_sim_spearman
2030
+ value: 87.20408521902229
2031
+ - type: euclidean_pearson
2032
+ value: 86.8110651362115
2033
+ - type: euclidean_spearman
2034
+ value: 87.20408521902229
2035
+ - type: manhattan_pearson
2036
+ value: 86.77984656478691
2037
+ - type: manhattan_spearman
2038
+ value: 87.1719947099227
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 83.77823915496512
2050
+ - type: cos_sim_spearman
2051
+ value: 85.43566325729779
2052
+ - type: euclidean_pearson
2053
+ value: 84.5396956658821
2054
+ - type: euclidean_spearman
2055
+ value: 85.43566325729779
2056
+ - type: manhattan_pearson
2057
+ value: 84.5665398848169
2058
+ - type: manhattan_spearman
2059
+ value: 85.44375870303232
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 87.20030208471798
2071
+ - type: cos_sim_spearman
2072
+ value: 87.20485505076539
2073
+ - type: euclidean_pearson
2074
+ value: 88.10588324368722
2075
+ - type: euclidean_spearman
2076
+ value: 87.20485505076539
2077
+ - type: manhattan_pearson
2078
+ value: 87.92324770415183
2079
+ - type: manhattan_spearman
2080
+ value: 87.0571314561877
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 63.06093161604453
2092
+ - type: cos_sim_spearman
2093
+ value: 64.2163140357722
2094
+ - type: euclidean_pearson
2095
+ value: 65.27589680994006
2096
+ - type: euclidean_spearman
2097
+ value: 64.2163140357722
2098
+ - type: manhattan_pearson
2099
+ value: 65.45904383711101
2100
+ - type: manhattan_spearman
2101
+ value: 64.55404716679305
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 84.32976164578706
2113
+ - type: cos_sim_spearman
2114
+ value: 85.54302197678368
2115
+ - type: euclidean_pearson
2116
+ value: 85.26307149193056
2117
+ - type: euclidean_spearman
2118
+ value: 85.54302197678368
2119
+ - type: manhattan_pearson
2120
+ value: 85.26647282029371
2121
+ - type: manhattan_spearman
2122
+ value: 85.5316135265568
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 81.44675968318754
2134
+ - type: mrr
2135
+ value: 94.92741826075158
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 56.34400000000001
2147
+ - type: map_at_10
2148
+ value: 65.927
2149
+ - type: map_at_100
2150
+ value: 66.431
2151
+ - type: map_at_1000
2152
+ value: 66.461
2153
+ - type: map_at_3
2154
+ value: 63.529
2155
+ - type: map_at_5
2156
+ value: 64.818
2157
+ - type: mrr_at_1
2158
+ value: 59.333000000000006
2159
+ - type: mrr_at_10
2160
+ value: 67.54599999999999
2161
+ - type: mrr_at_100
2162
+ value: 67.892
2163
+ - type: mrr_at_1000
2164
+ value: 67.917
2165
+ - type: mrr_at_3
2166
+ value: 65.778
2167
+ - type: mrr_at_5
2168
+ value: 66.794
2169
+ - type: ndcg_at_1
2170
+ value: 59.333000000000006
2171
+ - type: ndcg_at_10
2172
+ value: 70.5
2173
+ - type: ndcg_at_100
2174
+ value: 72.688
2175
+ - type: ndcg_at_1000
2176
+ value: 73.483
2177
+ - type: ndcg_at_3
2178
+ value: 66.338
2179
+ - type: ndcg_at_5
2180
+ value: 68.265
2181
+ - type: precision_at_1
2182
+ value: 59.333000000000006
2183
+ - type: precision_at_10
2184
+ value: 9.3
2185
+ - type: precision_at_100
2186
+ value: 1.053
2187
+ - type: precision_at_1000
2188
+ value: 0.11199999999999999
2189
+ - type: precision_at_3
2190
+ value: 25.889
2191
+ - type: precision_at_5
2192
+ value: 16.866999999999997
2193
+ - type: recall_at_1
2194
+ value: 56.34400000000001
2195
+ - type: recall_at_10
2196
+ value: 82.789
2197
+ - type: recall_at_100
2198
+ value: 92.767
2199
+ - type: recall_at_1000
2200
+ value: 99
2201
+ - type: recall_at_3
2202
+ value: 71.64399999999999
2203
+ - type: recall_at_5
2204
+ value: 76.322
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.75742574257426
2216
+ - type: cos_sim_ap
2217
+ value: 93.52081548447406
2218
+ - type: cos_sim_f1
2219
+ value: 87.33850129198966
2220
+ - type: cos_sim_precision
2221
+ value: 90.37433155080214
2222
+ - type: cos_sim_recall
2223
+ value: 84.5
2224
+ - type: dot_accuracy
2225
+ value: 99.75742574257426
2226
+ - type: dot_ap
2227
+ value: 93.52081548447406
2228
+ - type: dot_f1
2229
+ value: 87.33850129198966
2230
+ - type: dot_precision
2231
+ value: 90.37433155080214
2232
+ - type: dot_recall
2233
+ value: 84.5
2234
+ - type: euclidean_accuracy
2235
+ value: 99.75742574257426
2236
+ - type: euclidean_ap
2237
+ value: 93.52081548447406
2238
+ - type: euclidean_f1
2239
+ value: 87.33850129198966
2240
+ - type: euclidean_precision
2241
+ value: 90.37433155080214
2242
+ - type: euclidean_recall
2243
+ value: 84.5
2244
+ - type: manhattan_accuracy
2245
+ value: 99.75841584158415
2246
+ - type: manhattan_ap
2247
+ value: 93.4975678585854
2248
+ - type: manhattan_f1
2249
+ value: 87.26708074534162
2250
+ - type: manhattan_precision
2251
+ value: 90.45064377682404
2252
+ - type: manhattan_recall
2253
+ value: 84.3
2254
+ - type: max_accuracy
2255
+ value: 99.75841584158415
2256
+ - type: max_ap
2257
+ value: 93.52081548447406
2258
+ - type: max_f1
2259
+ value: 87.33850129198966
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 64.31437036686651
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 33.25569319007206
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 49.90474939720706
2293
+ - type: mrr
2294
+ value: 50.568115503777264
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 29.866828641244712
2306
+ - type: cos_sim_spearman
2307
+ value: 30.077555055873866
2308
+ - type: dot_pearson
2309
+ value: 29.866832988572266
2310
+ - type: dot_spearman
2311
+ value: 30.077555055873866
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.232
2323
+ - type: map_at_10
2324
+ value: 2.094
2325
+ - type: map_at_100
2326
+ value: 11.971
2327
+ - type: map_at_1000
2328
+ value: 28.158
2329
+ - type: map_at_3
2330
+ value: 0.688
2331
+ - type: map_at_5
2332
+ value: 1.114
2333
+ - type: mrr_at_1
2334
+ value: 88
2335
+ - type: mrr_at_10
2336
+ value: 93.4
2337
+ - type: mrr_at_100
2338
+ value: 93.4
2339
+ - type: mrr_at_1000
2340
+ value: 93.4
2341
+ - type: mrr_at_3
2342
+ value: 93
2343
+ - type: mrr_at_5
2344
+ value: 93.4
2345
+ - type: ndcg_at_1
2346
+ value: 84
2347
+ - type: ndcg_at_10
2348
+ value: 79.923
2349
+ - type: ndcg_at_100
2350
+ value: 61.17
2351
+ - type: ndcg_at_1000
2352
+ value: 53.03
2353
+ - type: ndcg_at_3
2354
+ value: 84.592
2355
+ - type: ndcg_at_5
2356
+ value: 82.821
2357
+ - type: precision_at_1
2358
+ value: 88
2359
+ - type: precision_at_10
2360
+ value: 85
2361
+ - type: precision_at_100
2362
+ value: 63.019999999999996
2363
+ - type: precision_at_1000
2364
+ value: 23.554
2365
+ - type: precision_at_3
2366
+ value: 89.333
2367
+ - type: precision_at_5
2368
+ value: 87.2
2369
+ - type: recall_at_1
2370
+ value: 0.232
2371
+ - type: recall_at_10
2372
+ value: 2.255
2373
+ - type: recall_at_100
2374
+ value: 14.823
2375
+ - type: recall_at_1000
2376
+ value: 49.456
2377
+ - type: recall_at_3
2378
+ value: 0.718
2379
+ - type: recall_at_5
2380
+ value: 1.175
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 2.547
2392
+ - type: map_at_10
2393
+ value: 11.375
2394
+ - type: map_at_100
2395
+ value: 18.194
2396
+ - type: map_at_1000
2397
+ value: 19.749
2398
+ - type: map_at_3
2399
+ value: 5.825
2400
+ - type: map_at_5
2401
+ value: 8.581
2402
+ - type: mrr_at_1
2403
+ value: 32.653
2404
+ - type: mrr_at_10
2405
+ value: 51.32
2406
+ - type: mrr_at_100
2407
+ value: 51.747
2408
+ - type: mrr_at_1000
2409
+ value: 51.747
2410
+ - type: mrr_at_3
2411
+ value: 47.278999999999996
2412
+ - type: mrr_at_5
2413
+ value: 48.605
2414
+ - type: ndcg_at_1
2415
+ value: 29.592000000000002
2416
+ - type: ndcg_at_10
2417
+ value: 28.151
2418
+ - type: ndcg_at_100
2419
+ value: 39.438
2420
+ - type: ndcg_at_1000
2421
+ value: 50.769
2422
+ - type: ndcg_at_3
2423
+ value: 30.758999999999997
2424
+ - type: ndcg_at_5
2425
+ value: 30.366
2426
+ - type: precision_at_1
2427
+ value: 32.653
2428
+ - type: precision_at_10
2429
+ value: 25.714
2430
+ - type: precision_at_100
2431
+ value: 8.041
2432
+ - type: precision_at_1000
2433
+ value: 1.555
2434
+ - type: precision_at_3
2435
+ value: 33.333
2436
+ - type: precision_at_5
2437
+ value: 31.837
2438
+ - type: recall_at_1
2439
+ value: 2.547
2440
+ - type: recall_at_10
2441
+ value: 18.19
2442
+ - type: recall_at_100
2443
+ value: 49.538
2444
+ - type: recall_at_1000
2445
+ value: 83.86
2446
+ - type: recall_at_3
2447
+ value: 7.329
2448
+ - type: recall_at_5
2449
+ value: 11.532
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 71.4952
2461
+ - type: ap
2462
+ value: 14.793362635531409
2463
+ - type: f1
2464
+ value: 55.204635551516915
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 61.5365025466893
2476
+ - type: f1
2477
+ value: 61.81742556334845
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 49.05531070301185
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 86.51725576682364
2500
+ - type: cos_sim_ap
2501
+ value: 75.2292304265163
2502
+ - type: cos_sim_f1
2503
+ value: 69.54022988505749
2504
+ - type: cos_sim_precision
2505
+ value: 63.65629110039457
2506
+ - type: cos_sim_recall
2507
+ value: 76.62269129287598
2508
+ - type: dot_accuracy
2509
+ value: 86.51725576682364
2510
+ - type: dot_ap
2511
+ value: 75.22922386081054
2512
+ - type: dot_f1
2513
+ value: 69.54022988505749
2514
+ - type: dot_precision
2515
+ value: 63.65629110039457
2516
+ - type: dot_recall
2517
+ value: 76.62269129287598
2518
+ - type: euclidean_accuracy
2519
+ value: 86.51725576682364
2520
+ - type: euclidean_ap
2521
+ value: 75.22925730473472
2522
+ - type: euclidean_f1
2523
+ value: 69.54022988505749
2524
+ - type: euclidean_precision
2525
+ value: 63.65629110039457
2526
+ - type: euclidean_recall
2527
+ value: 76.62269129287598
2528
+ - type: manhattan_accuracy
2529
+ value: 86.52321630804077
2530
+ - type: manhattan_ap
2531
+ value: 75.20608115037336
2532
+ - type: manhattan_f1
2533
+ value: 69.60000000000001
2534
+ - type: manhattan_precision
2535
+ value: 64.37219730941705
2536
+ - type: manhattan_recall
2537
+ value: 75.75197889182058
2538
+ - type: max_accuracy
2539
+ value: 86.52321630804077
2540
+ - type: max_ap
2541
+ value: 75.22925730473472
2542
+ - type: max_f1
2543
+ value: 69.60000000000001
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 89.34877944657896
2555
+ - type: cos_sim_ap
2556
+ value: 86.71257569277373
2557
+ - type: cos_sim_f1
2558
+ value: 79.10386355986088
2559
+ - type: cos_sim_precision
2560
+ value: 76.91468470434214
2561
+ - type: cos_sim_recall
2562
+ value: 81.4213119802895
2563
+ - type: dot_accuracy
2564
+ value: 89.34877944657896
2565
+ - type: dot_ap
2566
+ value: 86.71257133133368
2567
+ - type: dot_f1
2568
+ value: 79.10386355986088
2569
+ - type: dot_precision
2570
+ value: 76.91468470434214
2571
+ - type: dot_recall
2572
+ value: 81.4213119802895
2573
+ - type: euclidean_accuracy
2574
+ value: 89.34877944657896
2575
+ - type: euclidean_ap
2576
+ value: 86.71257651501476
2577
+ - type: euclidean_f1
2578
+ value: 79.10386355986088
2579
+ - type: euclidean_precision
2580
+ value: 76.91468470434214
2581
+ - type: euclidean_recall
2582
+ value: 81.4213119802895
2583
+ - type: manhattan_accuracy
2584
+ value: 89.35848177901967
2585
+ - type: manhattan_ap
2586
+ value: 86.69330615469126
2587
+ - type: manhattan_f1
2588
+ value: 79.13867741453949
2589
+ - type: manhattan_precision
2590
+ value: 76.78881807647741
2591
+ - type: manhattan_recall
2592
+ value: 81.63689559593472
2593
+ - type: max_accuracy
2594
+ value: 89.35848177901967
2595
+ - type: max_ap
2596
+ value: 86.71257651501476
2597
+ - type: max_f1
2598
+ value: 79.13867741453949
2599
+ license: apache-2.0
2600
+ language:
2601
+ - en
2602
+ ---
2603
+
2604
+
2605
+ # nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder
2606
+
2607
+ `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 performance on short and long context tasks.
2608
+ .
2609
+
2610
+
2611
+ | Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data |
2612
+ | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- |
2613
+ | nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ |
2614
+ | jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ |
2615
+ | text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ |
2616
+ | text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ |
2617
+
2618
+
2619
+
2620
+ ## Training Details
2621
+
2622
+ We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
2623
+ the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
2624
+
2625
+ In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
2626
+
2627
+ For more details, see Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf).
2628
+
2629
+ Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
2630
+
2631
+ ## Usage
2632
+
2633
+
2634
+ ```python
2635
+ import torch
2636
+ import torch.nn.functional as F
2637
+ from transformers import AutoTokenizer, AutoModel
2638
+
2639
+ def mean_pooling(model_output, attention_mask):
2640
+ token_embeddings = model_output[0]
2641
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
2642
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
2643
+
2644
+ sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
2645
+
2646
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
2647
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
2648
+
2649
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2650
+
2651
+ with torch.no_grad():
2652
+ model_output = model(**encoded_input)
2653
+
2654
+ embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
2655
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2656
+ print(embeddings)
2657
+ ```
2658
+
2659
+ The model natively supports scaling of the sequence length past 2048 tokens. To do so,
2660
+
2661
+ ```diff
2662
+ - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
2663
+ + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
2664
+
2665
+
2666
+ - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
2667
+ + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True, rotary_scaling_factor=2)
2668
+ ```