Delete modeling_hf_nomic_bert.py
Browse files- modeling_hf_nomic_bert.py +0 -2071
modeling_hf_nomic_bert.py
DELETED
@@ -1,2071 +0,0 @@
|
|
1 |
-
# Copyright (c) 2022, Tri Dao.
|
2 |
-
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
3 |
-
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
4 |
-
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
-
|
6 |
-
import logging
|
7 |
-
|
8 |
-
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
-
import math
|
10 |
-
import numpy as np
|
11 |
-
import collections
|
12 |
-
import os
|
13 |
-
import re
|
14 |
-
from collections import OrderedDict
|
15 |
-
from functools import partial
|
16 |
-
from typing import List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
import torch.nn as nn
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from einops import rearrange, repeat
|
22 |
-
from safetensors.torch import load_file as safe_load_file
|
23 |
-
from transformers import GPT2Config, PreTrainedModel, ViTModel, ViTConfig
|
24 |
-
from transformers.models.bert.modeling_bert import (
|
25 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
26 |
-
MaskedLMOutput,
|
27 |
-
SequenceClassifierOutput,
|
28 |
-
)
|
29 |
-
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
30 |
-
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
31 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast
|
32 |
-
from torch.nn.modules.utils import _pair
|
33 |
-
|
34 |
-
from .configuration_hf_nomic_bert import NomicBertConfig
|
35 |
-
|
36 |
-
logger = logging.getLogger(__name__)
|
37 |
-
|
38 |
-
|
39 |
-
# adapted from flash attention, added safe serialization option for hf models
|
40 |
-
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
41 |
-
# If not fp32, then we don't want to load directly to the GPU
|
42 |
-
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
43 |
-
is_sharded = False
|
44 |
-
load_safe = False
|
45 |
-
resolved_archive_file = None
|
46 |
-
|
47 |
-
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
48 |
-
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
49 |
-
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
50 |
-
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
51 |
-
|
52 |
-
if os.path.isfile(weights_path):
|
53 |
-
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
54 |
-
elif os.path.isfile(weights_index_path):
|
55 |
-
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
|
56 |
-
is_sharded = True
|
57 |
-
elif os.path.isfile(safe_weights_path):
|
58 |
-
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
59 |
-
load_safe = True
|
60 |
-
elif os.path.isfile(safe_weights_index_path):
|
61 |
-
resolved_archive_file = cached_file(
|
62 |
-
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
63 |
-
)
|
64 |
-
is_sharded = True
|
65 |
-
load_safe = True
|
66 |
-
else: # Try loading from HF hub instead of from local files
|
67 |
-
resolved_archive_file = None
|
68 |
-
for weight_name in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
69 |
-
resolved_archive_file = cached_file(
|
70 |
-
model_name, weight_name, _raise_exceptions_for_missing_entries=False
|
71 |
-
)
|
72 |
-
if resolved_archive_file is not None:
|
73 |
-
if weight_name in [SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
74 |
-
load_safe = True
|
75 |
-
if weight_name in [WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
76 |
-
is_sharded = True
|
77 |
-
break
|
78 |
-
|
79 |
-
if resolved_archive_file is None:
|
80 |
-
raise EnvironmentError(f"Model name {model_name} was not found.")
|
81 |
-
|
82 |
-
if load_safe:
|
83 |
-
loader = partial(safe_load_file, device=mapped_device)
|
84 |
-
else:
|
85 |
-
loader = partial(torch.load, map_location=mapped_device)
|
86 |
-
|
87 |
-
if is_sharded:
|
88 |
-
# resolved_archive_file becomes a list of files that point to the different
|
89 |
-
# checkpoint shards in this case.
|
90 |
-
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
|
91 |
-
state_dict = {}
|
92 |
-
for sharded_file in resolved_archive_file:
|
93 |
-
state_dict.update(loader(sharded_file))
|
94 |
-
else:
|
95 |
-
state_dict = loader(resolved_archive_file)
|
96 |
-
# Convert dtype before moving to GPU to save memory
|
97 |
-
if dtype is not None:
|
98 |
-
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
99 |
-
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
100 |
-
return state_dict
|
101 |
-
|
102 |
-
|
103 |
-
def filter_shapes(state_dict, model):
|
104 |
-
"""
|
105 |
-
Filters the state dict to match the current model shape.
|
106 |
-
"""
|
107 |
-
filtered_state_dict = {}
|
108 |
-
for key, value in state_dict.items():
|
109 |
-
if key in model.state_dict():
|
110 |
-
if value.shape == model.state_dict()[key].shape:
|
111 |
-
filtered_state_dict[key] = value
|
112 |
-
return filtered_state_dict
|
113 |
-
|
114 |
-
|
115 |
-
def remap_bert_state_dict(
|
116 |
-
state_dict,
|
117 |
-
config,
|
118 |
-
remove_bert=False,
|
119 |
-
remove_cls_weights=False,
|
120 |
-
add_pooling_layer=False,
|
121 |
-
):
|
122 |
-
"""
|
123 |
-
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
124 |
-
"""
|
125 |
-
|
126 |
-
def add_bert_prefix(key):
|
127 |
-
# prepend bert. to the key
|
128 |
-
if key.startswith("bert.") or key.startswith("cls."):
|
129 |
-
return key
|
130 |
-
return f"bert.{key}"
|
131 |
-
|
132 |
-
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
133 |
-
|
134 |
-
# LayerNorm
|
135 |
-
def key_mapping_ln_gamma_beta(key):
|
136 |
-
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
137 |
-
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
138 |
-
return key
|
139 |
-
|
140 |
-
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
141 |
-
|
142 |
-
# Layers
|
143 |
-
def key_mapping_layers(key):
|
144 |
-
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
145 |
-
|
146 |
-
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
147 |
-
|
148 |
-
# LayerNorm
|
149 |
-
def key_mapping_ln(key):
|
150 |
-
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
151 |
-
key = re.sub(
|
152 |
-
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
153 |
-
r"bert.encoder.layers.\1.norm1.\2",
|
154 |
-
key,
|
155 |
-
)
|
156 |
-
key = re.sub(
|
157 |
-
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
158 |
-
r"bert.encoder.layers.\1.norm2.\2",
|
159 |
-
key,
|
160 |
-
)
|
161 |
-
key = re.sub(
|
162 |
-
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
163 |
-
r"cls.predictions.transform.layer_norm.\1",
|
164 |
-
key,
|
165 |
-
)
|
166 |
-
return key
|
167 |
-
|
168 |
-
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
169 |
-
|
170 |
-
# MLP
|
171 |
-
def key_mapping_mlp(key):
|
172 |
-
key = re.sub(
|
173 |
-
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
174 |
-
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
175 |
-
key,
|
176 |
-
)
|
177 |
-
key = re.sub(
|
178 |
-
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
179 |
-
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
180 |
-
key,
|
181 |
-
)
|
182 |
-
return key
|
183 |
-
|
184 |
-
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
185 |
-
|
186 |
-
# Attention
|
187 |
-
last_layer_subset = getattr(config, "last_layer_subset", False)
|
188 |
-
for d in range(config.num_hidden_layers):
|
189 |
-
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
190 |
-
continue
|
191 |
-
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
192 |
-
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
193 |
-
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
194 |
-
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
195 |
-
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
196 |
-
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
197 |
-
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
198 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
199 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
200 |
-
else:
|
201 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
202 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
203 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
204 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
205 |
-
|
206 |
-
def key_mapping_attn(key):
|
207 |
-
return re.sub(
|
208 |
-
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
209 |
-
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
210 |
-
key,
|
211 |
-
)
|
212 |
-
|
213 |
-
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
214 |
-
|
215 |
-
def key_mapping_decoder_bias(key):
|
216 |
-
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
217 |
-
|
218 |
-
# remove nsp weights, we don't use
|
219 |
-
state_dict.pop("cls.seq_relationship.weight", None)
|
220 |
-
state_dict.pop("cls.seq_relationship.bias", None)
|
221 |
-
state_dict.pop("bert.embeddings.position_ids", None)
|
222 |
-
|
223 |
-
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
224 |
-
|
225 |
-
if remove_cls_weights:
|
226 |
-
cls_weights = [
|
227 |
-
"cls.predictions.decoder.bias",
|
228 |
-
"cls.predictions.transform.dense.weight",
|
229 |
-
"cls.predictions.transform.dense.bias",
|
230 |
-
"cls.predictions.transform.layer_norm.weight",
|
231 |
-
"cls.predictions.transform.layer_norm.bias",
|
232 |
-
"cls.predictions.decoder.weight",
|
233 |
-
]
|
234 |
-
for weight in cls_weights:
|
235 |
-
state_dict.pop(weight, None)
|
236 |
-
|
237 |
-
# Word embedding
|
238 |
-
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
239 |
-
if pad_vocab_size_multiple > 1:
|
240 |
-
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
241 |
-
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
242 |
-
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
243 |
-
)
|
244 |
-
if not remove_cls_weights:
|
245 |
-
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
246 |
-
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
247 |
-
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
248 |
-
)
|
249 |
-
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
250 |
-
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
251 |
-
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
252 |
-
if "cls.predictions.decoder.bias" in state_dict:
|
253 |
-
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
254 |
-
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
255 |
-
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
256 |
-
)
|
257 |
-
|
258 |
-
if add_pooling_layer is False:
|
259 |
-
pooler_weights = [
|
260 |
-
"bert.pooler.dense.weight",
|
261 |
-
"bert.pooler.dense.bias",
|
262 |
-
]
|
263 |
-
for key in pooler_weights:
|
264 |
-
state_dict.pop(key, None)
|
265 |
-
|
266 |
-
if remove_bert:
|
267 |
-
|
268 |
-
def remove_bert_prefix(key):
|
269 |
-
key = re.sub(r"^bert.", "", key)
|
270 |
-
return key
|
271 |
-
|
272 |
-
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
273 |
-
|
274 |
-
return state_dict
|
275 |
-
|
276 |
-
|
277 |
-
def _trunc_normal_(tensor, mean, std, a, b):
|
278 |
-
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
279 |
-
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
280 |
-
def norm_cdf(x):
|
281 |
-
# Computes standard normal cumulative distribution function
|
282 |
-
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
283 |
-
|
284 |
-
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
285 |
-
print("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
286 |
-
"The distribution of values may be incorrect.",
|
287 |
-
stacklevel=2)
|
288 |
-
|
289 |
-
# Values are generated by using a truncated uniform distribution and
|
290 |
-
# then using the inverse CDF for the normal distribution.
|
291 |
-
# Get upper and lower cdf values
|
292 |
-
l = norm_cdf((a - mean) / std)
|
293 |
-
u = norm_cdf((b - mean) / std)
|
294 |
-
|
295 |
-
# Uniformly fill tensor with values from [l, u], then translate to
|
296 |
-
# [2l-1, 2u-1].
|
297 |
-
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
298 |
-
|
299 |
-
# Use inverse cdf transform for normal distribution to get truncated
|
300 |
-
# standard normal
|
301 |
-
tensor.erfinv_()
|
302 |
-
|
303 |
-
# Transform to proper mean, std
|
304 |
-
tensor.mul_(std * math.sqrt(2.))
|
305 |
-
tensor.add_(mean)
|
306 |
-
|
307 |
-
# Clamp to ensure it's in the proper range
|
308 |
-
tensor.clamp_(min=a, max=b)
|
309 |
-
return tensor
|
310 |
-
|
311 |
-
def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.):
|
312 |
-
r"""Fills the input Tensor with values drawn from a truncated
|
313 |
-
normal distribution. The values are effectively drawn from the
|
314 |
-
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
315 |
-
with values outside :math:`[a, b]` redrawn until they are within
|
316 |
-
the bounds. The method used for generating the random values works
|
317 |
-
best when :math:`a \leq \text{mean} \leq b`.
|
318 |
-
|
319 |
-
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
320 |
-
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
321 |
-
and the result is subsquently scaled and shifted by the mean and std args.
|
322 |
-
|
323 |
-
Args:
|
324 |
-
tensor: an n-dimensional `torch.Tensor`
|
325 |
-
mean: the mean of the normal distribution
|
326 |
-
std: the standard deviation of the normal distribution
|
327 |
-
a: the minimum cutoff value
|
328 |
-
b: the maximum cutoff value
|
329 |
-
Examples:
|
330 |
-
>>> w = torch.empty(3, 5)
|
331 |
-
>>> nn.init.trunc_normal_(w)
|
332 |
-
"""
|
333 |
-
with torch.no_grad():
|
334 |
-
_trunc_normal_(tensor, 0, 1.0, a, b)
|
335 |
-
tensor.mul_(std).add_(mean)
|
336 |
-
return tensor
|
337 |
-
|
338 |
-
|
339 |
-
class NomicBertPreTrainedModel(PreTrainedModel):
|
340 |
-
"""An abstract class to handle weights initialization and
|
341 |
-
a simple interface for dowloading and loading pretrained models.
|
342 |
-
"""
|
343 |
-
|
344 |
-
config_class = NomicBertConfig
|
345 |
-
base_model_prefix = "model"
|
346 |
-
supports_gradient_checkpointing = True
|
347 |
-
_no_split_modules = ["Block"]
|
348 |
-
_skip_keys_device_placement = "past_key_values"
|
349 |
-
|
350 |
-
def __init__(self, config, *inputs, **kwargs):
|
351 |
-
super().__init__(config)
|
352 |
-
if not isinstance(config, GPT2Config):
|
353 |
-
raise ValueError(
|
354 |
-
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
355 |
-
"To create a model from a Google pretrained model use "
|
356 |
-
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
357 |
-
self.__class__.__name__, self.__class__.__name__
|
358 |
-
)
|
359 |
-
)
|
360 |
-
self.config = config
|
361 |
-
|
362 |
-
@classmethod
|
363 |
-
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
364 |
-
"""
|
365 |
-
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
366 |
-
Download and cache the pre-trained model file if needed.
|
367 |
-
|
368 |
-
Params:
|
369 |
-
pretrained_model_name_or_path: either:
|
370 |
-
- a path or url to a pretrained model archive containing:
|
371 |
-
. `bert_config.json` a configuration file for the model
|
372 |
-
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
373 |
-
- a path or url to a pretrained model archive containing:
|
374 |
-
. `bert_config.json` a configuration file for the model
|
375 |
-
. `model.chkpt` a TensorFlow checkpoint
|
376 |
-
*inputs, **kwargs: additional input for the specific NomicBert class
|
377 |
-
(ex: num_labels for NomicBertForSequenceClassification)
|
378 |
-
"""
|
379 |
-
# Instantiate model.
|
380 |
-
if config is None:
|
381 |
-
config = cls.config_class.from_pretrained(model_name)
|
382 |
-
remove_cls = cls != NomicBertForPreTraining
|
383 |
-
remove_bert_prefix = cls != NomicBertForPreTraining and cls != NomicBertForSequenceClassification
|
384 |
-
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
385 |
-
num_labels = kwargs.pop("num_labels", None)
|
386 |
-
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
387 |
-
strict = kwargs.pop("strict", True)
|
388 |
-
if rotary_scaling_factor:
|
389 |
-
config.rotary_scaling_factor = rotary_scaling_factor
|
390 |
-
|
391 |
-
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
392 |
-
config.n_positions = 2048
|
393 |
-
if num_labels:
|
394 |
-
config.num_labels = num_labels
|
395 |
-
|
396 |
-
if "add_pooling_layer" in kwargs:
|
397 |
-
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
398 |
-
else:
|
399 |
-
if cls == NomicBertModel:
|
400 |
-
model = cls(config, *inputs, add_pooling_layer=False)
|
401 |
-
else:
|
402 |
-
model = cls(config, *inputs)
|
403 |
-
# TODO: fix this
|
404 |
-
# Assuming we know what we're doing when loading from disk
|
405 |
-
# Prob a bad assumption but i'm tired and want to train this asap
|
406 |
-
if os.path.exists(model_name):
|
407 |
-
model_path = f"{model_name}/pytorch_model.bin"
|
408 |
-
if os.path.exists(model_path):
|
409 |
-
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
410 |
-
else:
|
411 |
-
model_path = f"{model_name}/model.safetensors"
|
412 |
-
if not os.path.exists(model_path):
|
413 |
-
raise ValueError(f"Model path {model_path} not found")
|
414 |
-
state_dict = safe_load_file(model_path)
|
415 |
-
|
416 |
-
if ignore_mismatched_shapes:
|
417 |
-
state_dict = filter_shapes(state_dict, model)
|
418 |
-
load_return = model.load_state_dict(state_dict, strict=False)
|
419 |
-
else:
|
420 |
-
# TODO: can probably check config class and see if we need to remap from a bert model
|
421 |
-
state_dict = state_dict_from_pretrained(model_name)
|
422 |
-
state_dict = remap_bert_state_dict(
|
423 |
-
state_dict,
|
424 |
-
config,
|
425 |
-
remove_bert=remove_bert_prefix,
|
426 |
-
remove_cls_weights=remove_cls,
|
427 |
-
add_pooling_layer=getattr(config, "add_pooling_layer", False),
|
428 |
-
)
|
429 |
-
if ignore_mismatched_shapes:
|
430 |
-
state_dict = filter_shapes(state_dict, model)
|
431 |
-
|
432 |
-
load_return = model.load_state_dict(state_dict, strict=strict)
|
433 |
-
logger.warning(load_return)
|
434 |
-
return model
|
435 |
-
|
436 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
437 |
-
if isinstance(module, NomicBertEncoder):
|
438 |
-
module.gradient_checkpointing = value
|
439 |
-
|
440 |
-
|
441 |
-
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
442 |
-
def _init_weights(module, initializer_range=0.02):
|
443 |
-
if isinstance(module, nn.Linear):
|
444 |
-
nn.init.normal_(module.weight, std=initializer_range)
|
445 |
-
if module.bias is not None:
|
446 |
-
nn.init.zeros_(module.bias)
|
447 |
-
elif isinstance(module, nn.Embedding):
|
448 |
-
nn.init.normal_(module.weight, std=initializer_range)
|
449 |
-
if module.padding_idx is not None:
|
450 |
-
nn.init.zeros_(module.weight[module.padding_idx])
|
451 |
-
|
452 |
-
def _ntuple(n):
|
453 |
-
def parse(x):
|
454 |
-
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
455 |
-
return tuple(x)
|
456 |
-
return tuple(repeat(x, n))
|
457 |
-
return parse
|
458 |
-
|
459 |
-
|
460 |
-
to_1tuple = _ntuple(1)
|
461 |
-
to_2tuple = _ntuple(2)
|
462 |
-
to_3tuple = _ntuple(3)
|
463 |
-
to_4tuple = _ntuple(4)
|
464 |
-
to_ntuple = _ntuple
|
465 |
-
|
466 |
-
|
467 |
-
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
468 |
-
"""
|
469 |
-
Create 2D sin/cos positional embeddings.
|
470 |
-
|
471 |
-
Args:
|
472 |
-
embed_dim (`int`):
|
473 |
-
Embedding dimension.
|
474 |
-
grid_size (`int`):
|
475 |
-
The grid height and width.
|
476 |
-
add_cls_token (`bool`, *optional*, defaults to `False`):
|
477 |
-
Whether or not to add a classification (CLS) token.
|
478 |
-
|
479 |
-
Returns:
|
480 |
-
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
|
481 |
-
position embeddings (with or without classification token)
|
482 |
-
"""
|
483 |
-
grid_h = np.arange(grid_size, dtype=np.float32)
|
484 |
-
|
485 |
-
grid_w = np.arange(grid_size, dtype=np.float32)
|
486 |
-
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
487 |
-
grid = np.stack(grid, axis=0)
|
488 |
-
|
489 |
-
grid = grid.reshape([2, 1, grid_size, grid_size])
|
490 |
-
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
491 |
-
if add_cls_token:
|
492 |
-
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
493 |
-
return pos_embed
|
494 |
-
|
495 |
-
|
496 |
-
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
497 |
-
if embed_dim % 2 != 0:
|
498 |
-
raise ValueError("embed_dim must be even")
|
499 |
-
|
500 |
-
# use half of dimensions to encode grid_h
|
501 |
-
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
502 |
-
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
503 |
-
|
504 |
-
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
505 |
-
return emb
|
506 |
-
|
507 |
-
|
508 |
-
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
509 |
-
"""
|
510 |
-
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
511 |
-
"""
|
512 |
-
if embed_dim % 2 != 0:
|
513 |
-
raise ValueError("embed_dim must be even")
|
514 |
-
|
515 |
-
omega = np.arange(embed_dim // 2, dtype=float)
|
516 |
-
omega /= embed_dim / 2.0
|
517 |
-
omega = 1.0 / 10000**omega # (D/2,)
|
518 |
-
|
519 |
-
pos = pos.reshape(-1) # (M,)
|
520 |
-
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
521 |
-
|
522 |
-
emb_sin = np.sin(out) # (M, D/2)
|
523 |
-
emb_cos = np.cos(out) # (M, D/2)
|
524 |
-
|
525 |
-
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
526 |
-
return emb
|
527 |
-
|
528 |
-
def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]:
|
529 |
-
"""generate N-D grid in dimension order.
|
530 |
-
|
531 |
-
The ndgrid function is like meshgrid except that the order of the first two input arguments are switched.
|
532 |
-
|
533 |
-
That is, the statement
|
534 |
-
[X1,X2,X3] = ndgrid(x1,x2,x3)
|
535 |
-
|
536 |
-
produces the same result as
|
537 |
-
|
538 |
-
[X2,X1,X3] = meshgrid(x2,x1,x3)
|
539 |
-
|
540 |
-
This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make
|
541 |
-
torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy').
|
542 |
-
|
543 |
-
"""
|
544 |
-
try:
|
545 |
-
return torch.meshgrid(*tensors, indexing='ij')
|
546 |
-
except TypeError:
|
547 |
-
# old PyTorch < 1.10 will follow this path as it does not have indexing arg,
|
548 |
-
# the old behaviour of meshgrid was 'ij'
|
549 |
-
return torch.meshgrid(*tensors)
|
550 |
-
|
551 |
-
def build_fourier_pos_embed(
|
552 |
-
feat_shape: List[int],
|
553 |
-
bands: Optional[torch.Tensor] = None,
|
554 |
-
num_bands: int = 64,
|
555 |
-
max_res: int = 224,
|
556 |
-
temperature: float = 10000.,
|
557 |
-
linear_bands: bool = False,
|
558 |
-
include_grid: bool = False,
|
559 |
-
in_pixels: bool = True,
|
560 |
-
ref_feat_shape: Optional[List[int]] = None,
|
561 |
-
dtype: torch.dtype = torch.float32,
|
562 |
-
device: Optional[torch.device] = None,
|
563 |
-
) -> List[torch.Tensor]:
|
564 |
-
"""
|
565 |
-
|
566 |
-
Args:
|
567 |
-
feat_shape: Feature shape for embedding.
|
568 |
-
bands: Pre-calculated frequency bands.
|
569 |
-
num_bands: Number of frequency bands (determines output dim).
|
570 |
-
max_res: Maximum resolution for pixel based freq.
|
571 |
-
temperature: Temperature for non-pixel freq.
|
572 |
-
linear_bands: Linear band spacing for pixel based freq.
|
573 |
-
include_grid: Include the spatial grid in output.
|
574 |
-
in_pixels: Output in pixel freq.
|
575 |
-
ref_feat_shape: Reference feature shape for resize / fine-tune.
|
576 |
-
dtype: Output dtype.
|
577 |
-
device: Output device.
|
578 |
-
|
579 |
-
Returns:
|
580 |
-
|
581 |
-
"""
|
582 |
-
if bands is None:
|
583 |
-
if in_pixels:
|
584 |
-
bands = pixel_freq_bands(
|
585 |
-
num_bands,
|
586 |
-
float(max_res),
|
587 |
-
linear_bands=linear_bands,
|
588 |
-
device=device,
|
589 |
-
)
|
590 |
-
else:
|
591 |
-
bands = freq_bands(
|
592 |
-
num_bands,
|
593 |
-
temperature=temperature,
|
594 |
-
step=1,
|
595 |
-
device=device,
|
596 |
-
)
|
597 |
-
else:
|
598 |
-
if device is None:
|
599 |
-
device = bands.device
|
600 |
-
if dtype is None:
|
601 |
-
dtype = bands.dtype
|
602 |
-
|
603 |
-
if in_pixels:
|
604 |
-
t = [torch.linspace(-1., 1., steps=s, device=device, dtype=torch.float32) for s in feat_shape]
|
605 |
-
else:
|
606 |
-
t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape]
|
607 |
-
|
608 |
-
if ref_feat_shape is not None:
|
609 |
-
# eva's scheme for resizing rope embeddings (ref shape = pretrain)
|
610 |
-
t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]
|
611 |
-
|
612 |
-
grid = torch.stack(ndgrid(t), dim=-1)
|
613 |
-
grid = grid.unsqueeze(-1)
|
614 |
-
pos = grid * bands
|
615 |
-
|
616 |
-
pos_sin, pos_cos = pos.sin().to(dtype=dtype), pos.cos().to(dtype)
|
617 |
-
out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
|
618 |
-
return out
|
619 |
-
|
620 |
-
|
621 |
-
def build_rotary_pos_embed(
|
622 |
-
feat_shape: List[int],
|
623 |
-
bands: Optional[torch.Tensor] = None,
|
624 |
-
dim: int = 64,
|
625 |
-
max_res: int = 224,
|
626 |
-
temperature: float = 10000.,
|
627 |
-
linear_bands: bool = False,
|
628 |
-
in_pixels: bool = True,
|
629 |
-
ref_feat_shape: Optional[List[int]] = None,
|
630 |
-
dtype: torch.dtype = torch.float32,
|
631 |
-
device: Optional[torch.device] = None,
|
632 |
-
):
|
633 |
-
"""
|
634 |
-
|
635 |
-
Args:
|
636 |
-
feat_shape: Spatial shape of the target tensor for embedding.
|
637 |
-
bands: Optional pre-generated frequency bands
|
638 |
-
dim: Output dimension of embedding tensor.
|
639 |
-
max_res: Maximum resolution for pixel mode.
|
640 |
-
temperature: Temperature (inv freq) for non-pixel mode
|
641 |
-
linear_bands: Linearly (instead of log) spaced bands for pixel mode
|
642 |
-
in_pixels: Pixel vs language (inv freq) mode.
|
643 |
-
dtype: Output dtype.
|
644 |
-
device: Output device.
|
645 |
-
|
646 |
-
Returns:
|
647 |
-
|
648 |
-
"""
|
649 |
-
sin_emb, cos_emb = build_fourier_pos_embed(
|
650 |
-
feat_shape,
|
651 |
-
bands=bands,
|
652 |
-
num_bands=dim // 4,
|
653 |
-
max_res=max_res,
|
654 |
-
temperature=temperature,
|
655 |
-
linear_bands=linear_bands,
|
656 |
-
in_pixels=in_pixels,
|
657 |
-
ref_feat_shape=ref_feat_shape,
|
658 |
-
device=device,
|
659 |
-
dtype=dtype,
|
660 |
-
)
|
661 |
-
num_spatial_dim = 1
|
662 |
-
# this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
|
663 |
-
for x in feat_shape:
|
664 |
-
num_spatial_dim *= x
|
665 |
-
sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
|
666 |
-
cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
|
667 |
-
return sin_emb, cos_emb
|
668 |
-
|
669 |
-
def freq_bands(
|
670 |
-
num_bands: int,
|
671 |
-
temperature: float = 10000.,
|
672 |
-
step: int = 2,
|
673 |
-
device: Optional[torch.device] = None,
|
674 |
-
) -> torch.Tensor:
|
675 |
-
exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands
|
676 |
-
bands = 1. / (temperature ** exp)
|
677 |
-
return bands
|
678 |
-
|
679 |
-
|
680 |
-
def pixel_freq_bands(
|
681 |
-
num_bands: int,
|
682 |
-
max_freq: float = 224.,
|
683 |
-
linear_bands: bool = True,
|
684 |
-
device: Optional[torch.device] = None,
|
685 |
-
):
|
686 |
-
if linear_bands:
|
687 |
-
bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device)
|
688 |
-
else:
|
689 |
-
bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device)
|
690 |
-
return bands * torch.pi
|
691 |
-
|
692 |
-
def rot(x):
|
693 |
-
return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
|
694 |
-
|
695 |
-
def apply_rot_embed_cat(x: torch.Tensor, emb):
|
696 |
-
sin_emb, cos_emb = emb.tensor_split(2, -1)
|
697 |
-
if sin_emb.ndim == 3:
|
698 |
-
return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
|
699 |
-
return x * cos_emb + rot(x) * sin_emb
|
700 |
-
|
701 |
-
# taken from https://github.com/huggingface/pytorch-image-models/blob/cb0e4391beedcc5ac3ae4bce16561b95c326f32c/timm/layers/pos_embed_sincos.py#L363
|
702 |
-
class NomicVisionRotaryEmbeddingCat(nn.Module):
|
703 |
-
""" Rotary position embedding w/ concatenatd sin & cos
|
704 |
-
|
705 |
-
The following impl/resources were referenced for this impl:
|
706 |
-
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
|
707 |
-
* https://blog.eleuther.ai/rotary-embeddings/
|
708 |
-
"""
|
709 |
-
|
710 |
-
def __init__(
|
711 |
-
self,
|
712 |
-
dim,
|
713 |
-
max_res=224,
|
714 |
-
temperature=10000,
|
715 |
-
in_pixels=True,
|
716 |
-
linear_bands: bool = False,
|
717 |
-
feat_shape: Optional[List[int]] = None,
|
718 |
-
ref_feat_shape: Optional[List[int]] = None,
|
719 |
-
):
|
720 |
-
super().__init__()
|
721 |
-
self.dim = dim
|
722 |
-
self.max_res = max_res
|
723 |
-
self.temperature = temperature
|
724 |
-
self.in_pixels = in_pixels
|
725 |
-
self.feat_shape = feat_shape
|
726 |
-
self.ref_feat_shape = ref_feat_shape
|
727 |
-
|
728 |
-
if feat_shape is None:
|
729 |
-
# only cache bands
|
730 |
-
if in_pixels:
|
731 |
-
bands = pixel_freq_bands(
|
732 |
-
dim // 4,
|
733 |
-
float(max_res),
|
734 |
-
linear_bands=linear_bands,
|
735 |
-
)
|
736 |
-
else:
|
737 |
-
bands = freq_bands(
|
738 |
-
dim // 4,
|
739 |
-
temperature=temperature,
|
740 |
-
step=1,
|
741 |
-
)
|
742 |
-
self.register_buffer(
|
743 |
-
'bands',
|
744 |
-
bands,
|
745 |
-
persistent=False,
|
746 |
-
)
|
747 |
-
self.pos_embed = None
|
748 |
-
else:
|
749 |
-
# cache full sin/cos embeddings if shape provided up front
|
750 |
-
embeds = build_rotary_pos_embed(
|
751 |
-
feat_shape=feat_shape,
|
752 |
-
dim=dim,
|
753 |
-
max_res=max_res,
|
754 |
-
linear_bands=linear_bands,
|
755 |
-
in_pixels=in_pixels,
|
756 |
-
ref_feat_shape=self.ref_feat_shape,
|
757 |
-
)
|
758 |
-
self.bands = None
|
759 |
-
self.register_buffer(
|
760 |
-
'pos_embed',
|
761 |
-
torch.cat(embeds, -1),
|
762 |
-
persistent=False,
|
763 |
-
)
|
764 |
-
|
765 |
-
def get_embed(self, shape: Optional[List[int]] = None):
|
766 |
-
if self.bands is not None and shape is not None:
|
767 |
-
# rebuild embeddings every call, use if target shape changes
|
768 |
-
embeds = build_rotary_pos_embed(
|
769 |
-
shape,
|
770 |
-
self.bands,
|
771 |
-
in_pixels=self.in_pixels,
|
772 |
-
ref_feat_shape=self.ref_feat_shape,
|
773 |
-
)
|
774 |
-
return torch.cat(embeds, -1)
|
775 |
-
elif self.pos_embed is not None:
|
776 |
-
return self.pos_embed
|
777 |
-
else:
|
778 |
-
assert False, "get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands"
|
779 |
-
|
780 |
-
def forward(self, x):
|
781 |
-
# assuming channel-first tensor where spatial dim are >= 2
|
782 |
-
pos_embed = self.get_embed(x.shape[2:])
|
783 |
-
return apply_rot_embed_cat(x, pos_embed)
|
784 |
-
|
785 |
-
class NomicVisionPatchEmbeddings(nn.Module):
|
786 |
-
def __init__(
|
787 |
-
self,
|
788 |
-
config,
|
789 |
-
):
|
790 |
-
super().__init__()
|
791 |
-
img_size = _pair(config.img_size)
|
792 |
-
patch_size = _pair(config.patch_size)
|
793 |
-
self.img_size = img_size
|
794 |
-
self.patch_size = patch_size
|
795 |
-
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
796 |
-
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
797 |
-
|
798 |
-
self.proj = nn.Linear(
|
799 |
-
config.num_channels * patch_size[0] * patch_size[1], config.n_embd, bias=config.patch_embed_bias
|
800 |
-
)
|
801 |
-
|
802 |
-
self.learned_pos_embedding = False
|
803 |
-
self.sinusoidal_pos_embedding = False
|
804 |
-
self.no_embed_class = getattr(config, "no_embed_class", False)
|
805 |
-
|
806 |
-
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.n_embd)) if not getattr(config, "no_cls_token", False) else None
|
807 |
-
if config.learned_pos_embedding:
|
808 |
-
# this is the default in DINO
|
809 |
-
self.learned_pos_embedding = True
|
810 |
-
# hack for timm dinov2 with registers
|
811 |
-
num_patches = self.num_patches if getattr(config, "register_tokens", 0) > 0 else self.num_patches + 1
|
812 |
-
self.pos_embed = nn.Parameter(torch.randn(1, num_patches, config.n_embd) * 0.02) if getattr(config, "use_pos_embed", True) else None
|
813 |
-
elif getattr(config, "sinusoidal_pos_embedding", False):
|
814 |
-
self.sinusoidal_pos_embedding = True
|
815 |
-
if getattr(config, "use_pos_embed", True):
|
816 |
-
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, config.n_embd), requires_grad=False)
|
817 |
-
pos_embed = get_2d_sincos_pos_embed(config.n_embd, self.grid_size[0], add_cls_token=True)
|
818 |
-
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).to(self.pos_embed))
|
819 |
-
else:
|
820 |
-
self.pos_embed = None
|
821 |
-
else:
|
822 |
-
self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches + 1, config.n_embd) * 0.02) if getattr(config, "use_pos_embed", True) else None
|
823 |
-
|
824 |
-
if getattr(config, "register_tokens", 0) > 0:
|
825 |
-
self.reg_token = nn.Parameter(torch.randn(1, config.register_tokens, config.n_embd) * 0.02)
|
826 |
-
else:
|
827 |
-
self.reg_token = None
|
828 |
-
|
829 |
-
if config.mask_token:
|
830 |
-
self.mask_token = nn.Parameter(torch.zeros(1, config.n_embd))
|
831 |
-
|
832 |
-
self.patch_dropout = nn.Identity()
|
833 |
-
|
834 |
-
if getattr(config, "use_rotary_pos_emb", False):
|
835 |
-
ref_feat_shape = getattr(config, "ref_feat_shape", None)
|
836 |
-
ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None
|
837 |
-
self.rope = NomicVisionRotaryEmbeddingCat(
|
838 |
-
config.n_embd // config.n_head,
|
839 |
-
in_pixels=False,
|
840 |
-
feat_shape=self.grid_size,
|
841 |
-
ref_feat_shape=ref_feat_shape,
|
842 |
-
)
|
843 |
-
else:
|
844 |
-
self.rope = None
|
845 |
-
|
846 |
-
|
847 |
-
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
848 |
-
"""
|
849 |
-
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
850 |
-
resolution images.
|
851 |
-
|
852 |
-
Source:
|
853 |
-
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
854 |
-
"""
|
855 |
-
num_patches = embeddings.shape[1] - 1
|
856 |
-
num_positions = self.pos_embed.shape[1] - 1
|
857 |
-
if num_patches == num_positions and height == width:
|
858 |
-
return self.pos_embed
|
859 |
-
class_pos_embed = self.pos_embed[:, 0]
|
860 |
-
patch_pos_embed = self.pos_embed[:, 1:]
|
861 |
-
dim = embeddings.shape[-1]
|
862 |
-
height = height // self.patch_size[0]
|
863 |
-
width = width // self.patch_size[1]
|
864 |
-
# we add a small number to avoid floating point error in the interpolation
|
865 |
-
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
866 |
-
height, width = height + 0.1, width + 0.1
|
867 |
-
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
868 |
-
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
869 |
-
patch_pos_embed = nn.functional.interpolate(
|
870 |
-
patch_pos_embed,
|
871 |
-
scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)),
|
872 |
-
mode="bicubic",
|
873 |
-
align_corners=False,
|
874 |
-
)
|
875 |
-
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
|
876 |
-
raise ValueError("Width or height does not match with the interpolated position embeddings")
|
877 |
-
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
878 |
-
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
879 |
-
|
880 |
-
def forward(self, x):
|
881 |
-
# deepspeed case where the input is in fp32
|
882 |
-
if x.dtype != self.proj.weight.dtype:
|
883 |
-
x = x.to(dtype=self.proj.weight.dtype)
|
884 |
-
|
885 |
-
_, _, height, width = x.shape
|
886 |
-
x = self.proj(
|
887 |
-
rearrange(
|
888 |
-
x,
|
889 |
-
"b c (h p1) (w p2) -> b h w (c p1 p2)",
|
890 |
-
p1=self.patch_size[0],
|
891 |
-
p2=self.patch_size[1],
|
892 |
-
)
|
893 |
-
)
|
894 |
-
embeddings = rearrange(x, "b h w c -> b (h w) c")
|
895 |
-
|
896 |
-
to_cat = []
|
897 |
-
if self.cls_token is not None:
|
898 |
-
if self.sinusoidal_pos_embedding:
|
899 |
-
cls_token = self.cls_token + self.pos_embed[:, 0]
|
900 |
-
cls_token = cls_token.expand(embeddings.shape[0], -1, -1)
|
901 |
-
to_cat += [cls_token]
|
902 |
-
else:
|
903 |
-
cls_token = self.cls_token.expand(embeddings.shape[0], 1, -1)
|
904 |
-
to_cat += [cls_token]
|
905 |
-
|
906 |
-
if self.reg_token is not None:
|
907 |
-
to_cat += [self.reg_token.expand(embeddings.shape[0], -1, -1)]
|
908 |
-
|
909 |
-
rot_pos_embed = self.rope.get_embed() if self.rope is not None else None
|
910 |
-
|
911 |
-
if self.no_embed_class:
|
912 |
-
if self.learned_pos_embedding:
|
913 |
-
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
914 |
-
else:
|
915 |
-
if self.pos_embed is not None:
|
916 |
-
embeddings = embeddings + self.pos_embed
|
917 |
-
if to_cat:
|
918 |
-
embeddings = torch.cat(to_cat + [embeddings], dim=1)
|
919 |
-
else:
|
920 |
-
if to_cat:
|
921 |
-
embeddings = torch.cat(to_cat + [embeddings], dim=1)
|
922 |
-
if self.learned_pos_embedding:
|
923 |
-
if self.pos_embed is not None:
|
924 |
-
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
925 |
-
else:
|
926 |
-
if self.pos_embed is not None:
|
927 |
-
embeddings = embeddings + self.pos_embed
|
928 |
-
|
929 |
-
embeddings = self.patch_dropout(embeddings)
|
930 |
-
|
931 |
-
return embeddings, rot_pos_embed
|
932 |
-
|
933 |
-
|
934 |
-
class NomicBertEmbeddings(nn.Module):
|
935 |
-
def __init__(self, config):
|
936 |
-
"""
|
937 |
-
If max_position_embeddings <= 0, there's no position embeddings
|
938 |
-
If type_vocab_size <= 0, there's no token type embeddings
|
939 |
-
"""
|
940 |
-
super().__init__()
|
941 |
-
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
942 |
-
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
943 |
-
self.type_vocab_size = config.type_vocab_size
|
944 |
-
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
945 |
-
self.position_embeddings = nn.Embedding(
|
946 |
-
config.max_position_embeddings,
|
947 |
-
config.hidden_size,
|
948 |
-
)
|
949 |
-
if self.type_vocab_size > 0:
|
950 |
-
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
951 |
-
|
952 |
-
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
953 |
-
"""
|
954 |
-
input_ids: (batch, seqlen)
|
955 |
-
position_ids: (batch, seqlen)
|
956 |
-
token_type_ids: (batch, seqlen)
|
957 |
-
"""
|
958 |
-
batch_size, seqlen = input_ids.shape
|
959 |
-
embeddings = self.word_embeddings(input_ids)
|
960 |
-
|
961 |
-
if self.type_vocab_size > 0:
|
962 |
-
if token_type_ids is None:
|
963 |
-
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
964 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
965 |
-
embeddings = embeddings + token_type_embeddings
|
966 |
-
|
967 |
-
if self.max_position_embeddings > 0:
|
968 |
-
if position_ids is None:
|
969 |
-
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
970 |
-
position_embeddings = self.position_embeddings(position_ids)
|
971 |
-
embeddings = embeddings + position_embeddings
|
972 |
-
return embeddings
|
973 |
-
|
974 |
-
|
975 |
-
class NomicBertMLP(nn.Module):
|
976 |
-
def __init__(
|
977 |
-
self,
|
978 |
-
in_features,
|
979 |
-
hidden_features=None,
|
980 |
-
out_features=None,
|
981 |
-
activation=F.gelu,
|
982 |
-
bias1=True,
|
983 |
-
bias2=True,
|
984 |
-
return_residual=False,
|
985 |
-
fused_bias_fc=False,
|
986 |
-
):
|
987 |
-
super().__init__()
|
988 |
-
out_features = out_features if out_features is not None else in_features
|
989 |
-
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
990 |
-
self.return_residual = return_residual
|
991 |
-
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
992 |
-
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
993 |
-
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
994 |
-
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
995 |
-
|
996 |
-
def forward(self, x):
|
997 |
-
y = self.fc1(x)
|
998 |
-
y = self.activation(y)
|
999 |
-
y = self.fc2(y)
|
1000 |
-
return y if not self.return_residual else (y, x)
|
1001 |
-
|
1002 |
-
|
1003 |
-
class NomciBertGatedMLP(nn.Module):
|
1004 |
-
def __init__(
|
1005 |
-
self,
|
1006 |
-
in_features,
|
1007 |
-
hidden_features=None,
|
1008 |
-
out_features=None,
|
1009 |
-
activation=F.sigmoid,
|
1010 |
-
bias1=True,
|
1011 |
-
bias2=True,
|
1012 |
-
multiple_of=256,
|
1013 |
-
return_residual=False,
|
1014 |
-
fused_bias_fc=True,
|
1015 |
-
device=None,
|
1016 |
-
dtype=None,
|
1017 |
-
norm_layer=False,
|
1018 |
-
):
|
1019 |
-
super().__init__()
|
1020 |
-
out_features = out_features if out_features is not None else in_features
|
1021 |
-
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
1022 |
-
hidden_features = int((hidden_features + multiple_of - 1) // multiple_of * multiple_of)
|
1023 |
-
self.return_residual = return_residual
|
1024 |
-
|
1025 |
-
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
1026 |
-
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
1027 |
-
self.activation = activation
|
1028 |
-
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
1029 |
-
self.norm = nn.LayerNorm(hidden_features) if norm_layer else nn.Identity()
|
1030 |
-
|
1031 |
-
def forward(self, x):
|
1032 |
-
y = self.fc11(x)
|
1033 |
-
gate = self.fc12(x)
|
1034 |
-
if self.activation == F.sigmoid: # Special case for GLU
|
1035 |
-
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
1036 |
-
else:
|
1037 |
-
y = y * self.activation(gate)
|
1038 |
-
|
1039 |
-
# eva uses layer norm after the activation
|
1040 |
-
y = self.norm(y)
|
1041 |
-
|
1042 |
-
y = self.fc2(y)
|
1043 |
-
return y if not self.return_residual else (y, x)
|
1044 |
-
|
1045 |
-
|
1046 |
-
def rotate_half(x, interleaved=False):
|
1047 |
-
if not interleaved:
|
1048 |
-
x1, x2 = x.chunk(2, dim=-1)
|
1049 |
-
return torch.cat((-x2, x1), dim=-1)
|
1050 |
-
else:
|
1051 |
-
x1, x2 = x[..., ::2], x[..., 1::2]
|
1052 |
-
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
1053 |
-
|
1054 |
-
|
1055 |
-
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
1056 |
-
"""
|
1057 |
-
x: (batch_size, seqlen, nheads, headdim)
|
1058 |
-
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
1059 |
-
"""
|
1060 |
-
ro_dim = cos.shape[-1] * 2
|
1061 |
-
assert ro_dim <= x.shape[-1]
|
1062 |
-
cos, sin = (
|
1063 |
-
cos[offset : offset + x.shape[1]],
|
1064 |
-
sin[offset : offset + x.shape[1]],
|
1065 |
-
)
|
1066 |
-
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
1067 |
-
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
1068 |
-
return torch.cat(
|
1069 |
-
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
1070 |
-
dim=-1,
|
1071 |
-
)
|
1072 |
-
|
1073 |
-
|
1074 |
-
class NomicBertRotaryEmbedding(nn.Module):
|
1075 |
-
def __init__(
|
1076 |
-
self,
|
1077 |
-
dim: int,
|
1078 |
-
base=10000.0,
|
1079 |
-
interleaved=False,
|
1080 |
-
scale_base=None,
|
1081 |
-
pos_idx_in_fp32=True,
|
1082 |
-
device=None,
|
1083 |
-
):
|
1084 |
-
"""
|
1085 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
1086 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
1087 |
-
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
1088 |
-
otherwise they might be in lower precision.
|
1089 |
-
This option was added because previously (before 2023-07-02), when we construct
|
1090 |
-
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
1091 |
-
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
1092 |
-
self.inv_freq would be bf16, and the position indices are also in bf16.
|
1093 |
-
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
1094 |
-
embeddings for some positions will coincide.
|
1095 |
-
To maintain compatibility with models previously trained in pure bf16,
|
1096 |
-
we add this option.
|
1097 |
-
"""
|
1098 |
-
super().__init__()
|
1099 |
-
self.dim = dim
|
1100 |
-
self.base = float(base)
|
1101 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
1102 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
1103 |
-
inv_freq = self._compute_inv_freq(device)
|
1104 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
1105 |
-
self.interleaved = interleaved
|
1106 |
-
self.scale_base = scale_base
|
1107 |
-
scale = (
|
1108 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
1109 |
-
if scale_base is not None
|
1110 |
-
else None
|
1111 |
-
)
|
1112 |
-
self.register_buffer("scale", scale, persistent=False)
|
1113 |
-
|
1114 |
-
self._seq_len_cached = 0
|
1115 |
-
self._cos_cached = None
|
1116 |
-
self._sin_cached = None
|
1117 |
-
self._cos_k_cached = None
|
1118 |
-
self._sin_k_cached = None
|
1119 |
-
|
1120 |
-
def _compute_inv_freq(self, device=None):
|
1121 |
-
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
1122 |
-
|
1123 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
1124 |
-
# Reset the tables if the sequence length has changed,
|
1125 |
-
# if we're on a new device (possibly due to tracing for instance),
|
1126 |
-
# or if we're switching from inference mode to training
|
1127 |
-
if (
|
1128 |
-
seqlen > self._seq_len_cached
|
1129 |
-
or self._cos_cached is None
|
1130 |
-
or self._cos_cached.device != device
|
1131 |
-
or self._cos_cached.dtype != dtype
|
1132 |
-
or (self.training and self._cos_cached.is_inference())
|
1133 |
-
):
|
1134 |
-
self._seq_len_cached = seqlen
|
1135 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
1136 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
1137 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
1138 |
-
if self.pos_idx_in_fp32:
|
1139 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
1140 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
1141 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
1142 |
-
# cos & sin output to change significantly.
|
1143 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
1144 |
-
if self.inv_freq.dtype != torch.float32:
|
1145 |
-
inv_freq = self._compute_inv_freq(device=device)
|
1146 |
-
else:
|
1147 |
-
inv_freq = self.inv_freq
|
1148 |
-
else:
|
1149 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
1150 |
-
inv_freq = self.inv_freq
|
1151 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
1152 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
1153 |
-
freqs = torch.outer(t, inv_freq)
|
1154 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
1155 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
1156 |
-
|
1157 |
-
def forward(
|
1158 |
-
self,
|
1159 |
-
qkv: torch.Tensor,
|
1160 |
-
kv: Optional[torch.Tensor] = None,
|
1161 |
-
seqlen_offset: Union[int, torch.Tensor] = 0,
|
1162 |
-
max_seqlen: Optional[int] = None,
|
1163 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1164 |
-
"""
|
1165 |
-
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
1166 |
-
else it's just q of shape (batch, seqlen, nheads, headdim)
|
1167 |
-
kv: (batch, seqlen, 2, nheads, headdim)
|
1168 |
-
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
1169 |
-
Most commonly used in inference when we have KV cache.
|
1170 |
-
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
1171 |
-
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
1172 |
-
Apply rotary embedding *inplace* to qkv and / or kv.
|
1173 |
-
"""
|
1174 |
-
seqlen = qkv.shape[1]
|
1175 |
-
if seqlen > self._seq_len_cached:
|
1176 |
-
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
1177 |
-
elif max_seqlen is not None:
|
1178 |
-
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
1179 |
-
elif isinstance(seqlen_offset, int):
|
1180 |
-
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
1181 |
-
|
1182 |
-
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
1183 |
-
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
1184 |
-
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
1185 |
-
|
1186 |
-
|
1187 |
-
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
1188 |
-
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
1189 |
-
super().__init__(**kwargs)
|
1190 |
-
self.rotary_scaling_factor = rotary_scaling_factor
|
1191 |
-
self.max_position_embeddings = max_position_embeddings
|
1192 |
-
|
1193 |
-
def _compute_inv_freq(self, base=None, device=None):
|
1194 |
-
if base is None:
|
1195 |
-
base = self.base
|
1196 |
-
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
1197 |
-
|
1198 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
1199 |
-
# Reset the tables if the sequence length has changed,
|
1200 |
-
# if we're on a new device (possibly due to tracing for instance),
|
1201 |
-
# or if we're switching from inference mode to training
|
1202 |
-
if seqlen > self.max_position_embeddings:
|
1203 |
-
base = self.base * (
|
1204 |
-
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
1205 |
-
) ** (self.dim / (self.dim - 2))
|
1206 |
-
inv_freq = self._compute_inv_freq(base=base, device=device)
|
1207 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
1208 |
-
|
1209 |
-
if (
|
1210 |
-
seqlen > self._seq_len_cached
|
1211 |
-
or self._cos_cached is None
|
1212 |
-
or self._cos_cached.device != device
|
1213 |
-
or self._cos_cached.dtype != dtype
|
1214 |
-
or (self.training and self._cos_cached.is_inference())
|
1215 |
-
):
|
1216 |
-
self._seq_len_cached = seqlen
|
1217 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
1218 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
1219 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
1220 |
-
if self.pos_idx_in_fp32:
|
1221 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
1222 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
1223 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
1224 |
-
# cos & sin output to change significantly.
|
1225 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
1226 |
-
if self.inv_freq.dtype != torch.float32:
|
1227 |
-
if seqlen > self.max_position_embeddings:
|
1228 |
-
base = self.base * (
|
1229 |
-
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
1230 |
-
) ** (self.dim / (self.dim - 2))
|
1231 |
-
else:
|
1232 |
-
base = self.base
|
1233 |
-
inv_freq = self._compute_inv_freq(device=device, base=base)
|
1234 |
-
else:
|
1235 |
-
inv_freq = self.inv_freq
|
1236 |
-
else:
|
1237 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
1238 |
-
inv_freq = self.inv_freq
|
1239 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
1240 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
1241 |
-
freqs = torch.outer(t, inv_freq)
|
1242 |
-
if self.scale is None:
|
1243 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
1244 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
1245 |
-
else:
|
1246 |
-
power = (
|
1247 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
1248 |
-
) / self.scale_base
|
1249 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
1250 |
-
# We want the multiplication by scale to happen in fp32
|
1251 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
1252 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
1253 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
1254 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
1255 |
-
|
1256 |
-
|
1257 |
-
class NomicBertAttention(nn.Module):
|
1258 |
-
"""Multi-head self-attention and cross-attention"""
|
1259 |
-
|
1260 |
-
def __init__(
|
1261 |
-
self,
|
1262 |
-
config,
|
1263 |
-
) -> None:
|
1264 |
-
"""
|
1265 |
-
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
1266 |
-
return_residual: whether to return the input x along with the output. This is for
|
1267 |
-
performance reason: for post-norm architecture, returning the input allows us
|
1268 |
-
to fuse the backward of nn.Linear with the residual connection.
|
1269 |
-
"""
|
1270 |
-
super().__init__()
|
1271 |
-
self.embed_dim = config.n_embd
|
1272 |
-
self.use_flash_attn = config.use_flash_attn
|
1273 |
-
self.fused_bias_fc = config.fused_bias_fc
|
1274 |
-
|
1275 |
-
self.num_heads = config.n_head
|
1276 |
-
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
1277 |
-
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
1278 |
-
self.head_dim = self.embed_dim // self.num_heads
|
1279 |
-
# we don't really support mqa / gqa for now
|
1280 |
-
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
1281 |
-
|
1282 |
-
self.register_buffer(
|
1283 |
-
"norm_factor",
|
1284 |
-
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
1285 |
-
persistent=False,
|
1286 |
-
)
|
1287 |
-
|
1288 |
-
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
1289 |
-
if self.rotary_emb_dim > 0:
|
1290 |
-
if getattr(config, "rotary_scaling_factor", None):
|
1291 |
-
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
1292 |
-
dim=self.rotary_emb_dim,
|
1293 |
-
base=config.rotary_emb_base,
|
1294 |
-
scale_base=config.rotary_emb_scale_base,
|
1295 |
-
interleaved=config.rotary_emb_interleaved,
|
1296 |
-
rotary_scaling_factor=config.rotary_scaling_factor,
|
1297 |
-
max_position_embeddings=config.max_trained_positions,
|
1298 |
-
)
|
1299 |
-
else:
|
1300 |
-
self.rotary_emb = NomicBertRotaryEmbedding(
|
1301 |
-
dim=self.rotary_emb_dim,
|
1302 |
-
base=config.rotary_emb_base,
|
1303 |
-
scale_base=config.rotary_emb_scale_base,
|
1304 |
-
interleaved=config.rotary_emb_interleaved,
|
1305 |
-
)
|
1306 |
-
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
1307 |
-
# uses the head dimension instead of the sequence dimension
|
1308 |
-
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
1309 |
-
|
1310 |
-
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
1311 |
-
|
1312 |
-
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
1313 |
-
self.causal = config.causal
|
1314 |
-
self.drop = nn.Dropout(config.attn_pdrop)
|
1315 |
-
self.num_prefix_tokens = max(getattr(config, "register_tokens", 1), 1)
|
1316 |
-
|
1317 |
-
def forward(
|
1318 |
-
self,
|
1319 |
-
hidden_states: torch.Tensor,
|
1320 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1321 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1322 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1323 |
-
output_attentions: bool = False,
|
1324 |
-
use_cache: bool = False,
|
1325 |
-
is_padded_inputs: Optional[bool] = True,
|
1326 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
1327 |
-
max_seq_len: Optional[int] = None,
|
1328 |
-
rope: Optional[torch.Tensor] = None,
|
1329 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
1330 |
-
|
1331 |
-
has_layer_past = past_key_value is not None
|
1332 |
-
|
1333 |
-
if has_layer_past:
|
1334 |
-
past_key_value = past_key_value[0]
|
1335 |
-
past_len = past_key_value[1]
|
1336 |
-
else:
|
1337 |
-
past_len = 0
|
1338 |
-
|
1339 |
-
qkv = self.Wqkv(hidden_states)
|
1340 |
-
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
1341 |
-
|
1342 |
-
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
1343 |
-
|
1344 |
-
if self.rotary_emb_dim > 0:
|
1345 |
-
if self.rotary_head_dim:
|
1346 |
-
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
1347 |
-
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
1348 |
-
|
1349 |
-
if self.rotary_head_dim:
|
1350 |
-
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
1351 |
-
elif rope is not None:
|
1352 |
-
q, k, v = qkv.permute(0, 3, 1, 2, 4).unbind(dim=-2)
|
1353 |
-
q = torch.cat([q[:, :, :self.num_prefix_tokens], apply_rot_embed_cat(q[:, :, self.num_prefix_tokens:], rope)], dim=2).type_as(q)
|
1354 |
-
k = torch.cat([k[:, :, :self.num_prefix_tokens], apply_rot_embed_cat(k[:, :, self.num_prefix_tokens:], rope)], dim=2).type_as(q)
|
1355 |
-
|
1356 |
-
qkv = torch.stack([q, k, v], dim=-2)
|
1357 |
-
qkv = rearrange(qkv, "b h s three d -> b s three h d")
|
1358 |
-
|
1359 |
-
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
1360 |
-
|
1361 |
-
query = query.permute(0, 2, 1, 3)
|
1362 |
-
key = key.permute(0, 2, 1, 3)
|
1363 |
-
value = value.permute(0, 2, 1, 3)
|
1364 |
-
|
1365 |
-
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
1366 |
-
if attention_mask is not None:
|
1367 |
-
attention_scores = attention_scores + attention_mask
|
1368 |
-
|
1369 |
-
attentions_probs = F.softmax(attention_scores, dim=-1)
|
1370 |
-
attentions_probs = self.drop(attentions_probs)
|
1371 |
-
|
1372 |
-
attn_output = torch.matmul(attentions_probs, value)
|
1373 |
-
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
1374 |
-
|
1375 |
-
attn_output = self.out_proj(attn_output)
|
1376 |
-
|
1377 |
-
return attn_output
|
1378 |
-
|
1379 |
-
|
1380 |
-
class NomicBertBlock(NomicBertPreTrainedModel):
|
1381 |
-
def __init__(
|
1382 |
-
self,
|
1383 |
-
config,
|
1384 |
-
):
|
1385 |
-
super().__init__(config=config)
|
1386 |
-
self.prenorm = config.prenorm
|
1387 |
-
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
1388 |
-
|
1389 |
-
self.attn = NomicBertAttention(config)
|
1390 |
-
activation = (
|
1391 |
-
F.sigmoid
|
1392 |
-
if config.activation_function == "glu"
|
1393 |
-
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
1394 |
-
)
|
1395 |
-
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
1396 |
-
self.mlp = NomciBertGatedMLP(
|
1397 |
-
config.n_embd,
|
1398 |
-
hidden_features=config.n_inner,
|
1399 |
-
bias1=config.mlp_fc1_bias,
|
1400 |
-
bias2=config.mlp_fc2_bias,
|
1401 |
-
activation=activation,
|
1402 |
-
fused_bias_fc=config.fused_bias_fc,
|
1403 |
-
norm_layer=getattr(config, "norm_mlp", False),
|
1404 |
-
)
|
1405 |
-
else:
|
1406 |
-
self.mlp = NomicBertMLP(
|
1407 |
-
config.n_embd,
|
1408 |
-
hidden_features=config.n_inner,
|
1409 |
-
bias1=config.mlp_fc1_bias,
|
1410 |
-
bias2=config.mlp_fc2_bias,
|
1411 |
-
activation=activation,
|
1412 |
-
fused_bias_fc=config.fused_bias_fc,
|
1413 |
-
)
|
1414 |
-
|
1415 |
-
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
1416 |
-
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1417 |
-
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1418 |
-
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
1419 |
-
|
1420 |
-
def forward(
|
1421 |
-
self,
|
1422 |
-
hidden_states: torch.Tensor,
|
1423 |
-
hidden_states2: torch.Tensor,
|
1424 |
-
residual: Optional[torch.Tensor] = None,
|
1425 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1426 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1427 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1428 |
-
is_padded_inputs: Optional[bool] = True,
|
1429 |
-
output_attentions: Optional[bool] = False,
|
1430 |
-
use_cache: Optional[bool] = False,
|
1431 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
1432 |
-
max_seq_len: Optional[int] = None,
|
1433 |
-
rope: Optional[torch.Tensor] = None,
|
1434 |
-
):
|
1435 |
-
r"""Pass the input through the encoder layer.
|
1436 |
-
|
1437 |
-
Args:
|
1438 |
-
hidden_states: the sequence to the encoder layer (required).
|
1439 |
-
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
1440 |
-
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
1441 |
-
before applying the query projection. Useful for e.g., ViT where we only care
|
1442 |
-
about the CLS token in the last layer.
|
1443 |
-
"""
|
1444 |
-
if self.prenorm:
|
1445 |
-
dropped = self.dropout1(hidden_states)
|
1446 |
-
residual = (dropped + residual) if residual is not None else dropped
|
1447 |
-
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
1448 |
-
hidden_states = self.attn(
|
1449 |
-
hidden_states,
|
1450 |
-
attention_mask=attention_mask,
|
1451 |
-
is_padded_inputs=is_padded_inputs,
|
1452 |
-
cu_seqlens=cu_seqlens,
|
1453 |
-
max_seq_len=max_seq_len,
|
1454 |
-
rope=rope,
|
1455 |
-
)
|
1456 |
-
|
1457 |
-
dropped = self.dropout2(hidden_states)
|
1458 |
-
residual = (dropped + residual) if residual is not None else dropped
|
1459 |
-
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
1460 |
-
hidden_states = self.mlp(hidden_states)
|
1461 |
-
|
1462 |
-
return hidden_states, None, residual
|
1463 |
-
else:
|
1464 |
-
assert residual is None
|
1465 |
-
attn_outputs = self.attn(
|
1466 |
-
hidden_states,
|
1467 |
-
attention_mask=attention_mask,
|
1468 |
-
is_padded_inputs=is_padded_inputs,
|
1469 |
-
cu_seqlens=cu_seqlens,
|
1470 |
-
max_seq_len=max_seq_len,
|
1471 |
-
rope=rope,
|
1472 |
-
)
|
1473 |
-
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
|
1474 |
-
mlp_out = self.mlp(hidden_states)
|
1475 |
-
|
1476 |
-
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
|
1477 |
-
return hidden_states, None, None
|
1478 |
-
|
1479 |
-
|
1480 |
-
class NomicBertEncoder(nn.Module):
|
1481 |
-
def __init__(self, config: GPT2Config):
|
1482 |
-
super().__init__()
|
1483 |
-
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
1484 |
-
self.gradient_checkpointing = False
|
1485 |
-
self.config = config
|
1486 |
-
|
1487 |
-
def forward(
|
1488 |
-
self,
|
1489 |
-
hidden_states: torch.LongTensor = None,
|
1490 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1491 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1492 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1493 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1494 |
-
use_cache: Optional[bool] = None,
|
1495 |
-
output_attentions: Optional[bool] = None,
|
1496 |
-
output_hidden_states: Optional[bool] = None,
|
1497 |
-
return_dict: Optional[bool] = None,
|
1498 |
-
is_padded_inputs: Optional[bool] = True,
|
1499 |
-
rope: Optional[torch.Tensor] = None,
|
1500 |
-
):
|
1501 |
-
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
1502 |
-
This means that we only compute the last layer output for these tokens.
|
1503 |
-
subset_mask: (batch, seqlen), dtype=torch.bool
|
1504 |
-
"""
|
1505 |
-
hidden_states2 = None
|
1506 |
-
residual = None
|
1507 |
-
|
1508 |
-
for _, layer in enumerate(self.layers):
|
1509 |
-
if self.gradient_checkpointing and self.training:
|
1510 |
-
|
1511 |
-
def create_custom_forward(module):
|
1512 |
-
def custom_forward(*inputs):
|
1513 |
-
# None for past_key_value
|
1514 |
-
return module(*inputs)
|
1515 |
-
|
1516 |
-
return custom_forward
|
1517 |
-
|
1518 |
-
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
1519 |
-
create_custom_forward(layer),
|
1520 |
-
hidden_states,
|
1521 |
-
hidden_states2,
|
1522 |
-
residual,
|
1523 |
-
attention_mask,
|
1524 |
-
position_ids,
|
1525 |
-
past_key_values,
|
1526 |
-
is_padded_inputs,
|
1527 |
-
output_attentions,
|
1528 |
-
use_cache,
|
1529 |
-
None,
|
1530 |
-
None,
|
1531 |
-
rope,
|
1532 |
-
# if you freeze ANY layers, you need `use_reentrant=False`
|
1533 |
-
# https://github.com/huggingface/transformers/issues/21381
|
1534 |
-
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
1535 |
-
use_reentrant=False,
|
1536 |
-
)
|
1537 |
-
|
1538 |
-
else:
|
1539 |
-
hidden_states, hidden_states2, residual = layer(
|
1540 |
-
hidden_states,
|
1541 |
-
hidden_states2,
|
1542 |
-
residual,
|
1543 |
-
attention_mask,
|
1544 |
-
position_ids,
|
1545 |
-
None,
|
1546 |
-
is_padded_inputs,
|
1547 |
-
output_attentions,
|
1548 |
-
use_cache,
|
1549 |
-
rope=rope,
|
1550 |
-
)
|
1551 |
-
return hidden_states
|
1552 |
-
|
1553 |
-
|
1554 |
-
class NomicBertPooler(nn.Module):
|
1555 |
-
def __init__(self, config):
|
1556 |
-
super().__init__()
|
1557 |
-
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
1558 |
-
self.activation = nn.Tanh()
|
1559 |
-
|
1560 |
-
def forward(self, hidden_states, pool=True):
|
1561 |
-
# We "pool" the model by simply taking the hidden state corresponding
|
1562 |
-
# to the first token.
|
1563 |
-
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
1564 |
-
pooled_output = self.dense(first_token_tensor)
|
1565 |
-
pooled_output = self.activation(pooled_output)
|
1566 |
-
return pooled_output
|
1567 |
-
|
1568 |
-
|
1569 |
-
class NomicBertPredictionHeadTransform(nn.Module):
|
1570 |
-
def __init__(self, config):
|
1571 |
-
super().__init__()
|
1572 |
-
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
1573 |
-
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
1574 |
-
if config.activation_function == "swiglu":
|
1575 |
-
self.transform_act_fn = F.silu
|
1576 |
-
else:
|
1577 |
-
self.transform_act_fn = nn.GELU(approximate=approximate)
|
1578 |
-
|
1579 |
-
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1580 |
-
|
1581 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1582 |
-
hidden_states = self.dense(hidden_states)
|
1583 |
-
hidden_states = self.transform_act_fn(hidden_states)
|
1584 |
-
hidden_states = self.layer_norm(hidden_states)
|
1585 |
-
|
1586 |
-
return hidden_states
|
1587 |
-
|
1588 |
-
|
1589 |
-
class NomicBertLMPredictionHead(nn.Module):
|
1590 |
-
def __init__(self, config):
|
1591 |
-
super().__init__()
|
1592 |
-
|
1593 |
-
self.transform = NomicBertPredictionHeadTransform(config)
|
1594 |
-
|
1595 |
-
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
1596 |
-
|
1597 |
-
def forward(self, hidden_states):
|
1598 |
-
hidden_states = self.transform(hidden_states)
|
1599 |
-
hidden_states = self.decoder(hidden_states)
|
1600 |
-
return hidden_states
|
1601 |
-
|
1602 |
-
|
1603 |
-
class NomicBertPreTrainingHeads(nn.Module):
|
1604 |
-
def __init__(self, config):
|
1605 |
-
super().__init__()
|
1606 |
-
self.predictions = NomicBertLMPredictionHead(config)
|
1607 |
-
|
1608 |
-
def forward(self, sequence_output):
|
1609 |
-
prediction_scores = self.predictions(sequence_output)
|
1610 |
-
return prediction_scores
|
1611 |
-
|
1612 |
-
|
1613 |
-
class NomicBertModel(NomicBertPreTrainedModel):
|
1614 |
-
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
1615 |
-
super().__init__(config)
|
1616 |
-
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
1617 |
-
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
1618 |
-
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
|
1619 |
-
|
1620 |
-
assert config.activation_function in [
|
1621 |
-
"gelu",
|
1622 |
-
"gelu_new",
|
1623 |
-
"gelu_fast",
|
1624 |
-
"gelu_pytorch_tanh",
|
1625 |
-
"swiglu",
|
1626 |
-
"geglu",
|
1627 |
-
"glu",
|
1628 |
-
]
|
1629 |
-
|
1630 |
-
self.embeddings = NomicBertEmbeddings(config)
|
1631 |
-
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
1632 |
-
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1633 |
-
self.encoder = NomicBertEncoder(config)
|
1634 |
-
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
1635 |
-
|
1636 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1637 |
-
|
1638 |
-
def forward(
|
1639 |
-
self,
|
1640 |
-
input_ids,
|
1641 |
-
attention_mask=None,
|
1642 |
-
position_ids=None,
|
1643 |
-
token_type_ids=None,
|
1644 |
-
return_dict=None,
|
1645 |
-
matryoshka_dim=None,
|
1646 |
-
):
|
1647 |
-
if token_type_ids is None:
|
1648 |
-
token_type_ids = torch.zeros_like(input_ids)
|
1649 |
-
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
|
1650 |
-
hidden_states = self.emb_ln(hidden_states)
|
1651 |
-
hidden_states = self.emb_drop(hidden_states)
|
1652 |
-
|
1653 |
-
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
1654 |
-
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
|
1655 |
-
|
1656 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1657 |
-
|
1658 |
-
if matryoshka_dim:
|
1659 |
-
sequence_output = sequence_output[:, :matryoshka_dim]
|
1660 |
-
|
1661 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1662 |
-
last_hidden_state=sequence_output,
|
1663 |
-
pooler_output=pooled_output,
|
1664 |
-
)
|
1665 |
-
|
1666 |
-
|
1667 |
-
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
1668 |
-
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1669 |
-
|
1670 |
-
def __init__(self, config: GPT2Config):
|
1671 |
-
super().__init__(config)
|
1672 |
-
|
1673 |
-
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
1674 |
-
self.cls = NomicBertPreTrainingHeads(config)
|
1675 |
-
self.mlm_loss = nn.CrossEntropyLoss()
|
1676 |
-
|
1677 |
-
# Initialize weights and apply final processing
|
1678 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1679 |
-
self.tie_weights()
|
1680 |
-
|
1681 |
-
def tie_weights(self):
|
1682 |
-
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
1683 |
-
|
1684 |
-
def forward(
|
1685 |
-
self,
|
1686 |
-
input_ids,
|
1687 |
-
position_ids=None,
|
1688 |
-
token_type_ids=None,
|
1689 |
-
attention_mask=None,
|
1690 |
-
labels=None,
|
1691 |
-
):
|
1692 |
-
"""
|
1693 |
-
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
1694 |
-
mask).
|
1695 |
-
Outputs:
|
1696 |
-
if `labels` and `next_sentence_label` are not `None`:
|
1697 |
-
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1698 |
-
sentence classification loss.
|
1699 |
-
if `labels` or `next_sentence_label` is `None`:
|
1700 |
-
Outputs a tuple comprising
|
1701 |
-
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
1702 |
-
- the next sentence classification logits of shape [batch_size, 2].
|
1703 |
-
|
1704 |
-
"""
|
1705 |
-
outputs = self.bert(
|
1706 |
-
input_ids,
|
1707 |
-
position_ids=position_ids,
|
1708 |
-
token_type_ids=token_type_ids,
|
1709 |
-
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1710 |
-
)
|
1711 |
-
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
1712 |
-
|
1713 |
-
prediction_scores = self.cls(sequence_output)
|
1714 |
-
|
1715 |
-
total_loss = None
|
1716 |
-
if labels is not None:
|
1717 |
-
masked_lm_loss = self.mlm_loss(
|
1718 |
-
rearrange(prediction_scores, "... v -> (...) v"),
|
1719 |
-
rearrange(labels, "... -> (...)"),
|
1720 |
-
)
|
1721 |
-
total_loss = masked_lm_loss.float()
|
1722 |
-
|
1723 |
-
return MaskedLMOutput(
|
1724 |
-
loss=total_loss,
|
1725 |
-
logits=prediction_scores,
|
1726 |
-
hidden_states=outputs.hidden_states,
|
1727 |
-
attentions=None,
|
1728 |
-
)
|
1729 |
-
|
1730 |
-
|
1731 |
-
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
1732 |
-
def __init__(self, config):
|
1733 |
-
super().__init__(config)
|
1734 |
-
self.num_labels = config.num_labels
|
1735 |
-
self.config = config
|
1736 |
-
|
1737 |
-
self.bert = NomicBertModel(config)
|
1738 |
-
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
|
1739 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
1740 |
-
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
1741 |
-
|
1742 |
-
# Initialize weights and apply final processing
|
1743 |
-
self.post_init()
|
1744 |
-
|
1745 |
-
def forward(
|
1746 |
-
self,
|
1747 |
-
input_ids: Optional[torch.Tensor] = None,
|
1748 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1749 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
1750 |
-
position_ids: Optional[torch.Tensor] = None,
|
1751 |
-
head_mask: Optional[torch.Tensor] = None,
|
1752 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
1753 |
-
labels: Optional[torch.Tensor] = None,
|
1754 |
-
output_attentions: Optional[bool] = None,
|
1755 |
-
output_hidden_states: Optional[bool] = None,
|
1756 |
-
return_dict: Optional[bool] = None,
|
1757 |
-
):
|
1758 |
-
r"""
|
1759 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1760 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1761 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1762 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1763 |
-
"""
|
1764 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1765 |
-
outputs = self.bert(
|
1766 |
-
input_ids,
|
1767 |
-
position_ids=position_ids,
|
1768 |
-
token_type_ids=token_type_ids,
|
1769 |
-
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1770 |
-
)
|
1771 |
-
|
1772 |
-
pooled_output = outputs[1]
|
1773 |
-
|
1774 |
-
pooled_output = self.dropout(pooled_output)
|
1775 |
-
logits = self.classifier(pooled_output)
|
1776 |
-
|
1777 |
-
loss = None
|
1778 |
-
if labels is not None:
|
1779 |
-
if self.config.problem_type is None:
|
1780 |
-
if self.num_labels == 1:
|
1781 |
-
self.config.problem_type = "regression"
|
1782 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1783 |
-
self.config.problem_type = "single_label_classification"
|
1784 |
-
else:
|
1785 |
-
self.config.problem_type = "multi_label_classification"
|
1786 |
-
|
1787 |
-
if self.config.problem_type == "regression":
|
1788 |
-
loss_fct = nn.MSELoss()
|
1789 |
-
if self.num_labels == 1:
|
1790 |
-
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1791 |
-
else:
|
1792 |
-
loss = loss_fct(logits, labels)
|
1793 |
-
elif self.config.problem_type == "single_label_classification":
|
1794 |
-
loss_fct = nn.CrossEntropyLoss()
|
1795 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1796 |
-
elif self.config.problem_type == "multi_label_classification":
|
1797 |
-
loss_fct = nn.BCEWithLogitsLoss()
|
1798 |
-
loss = loss_fct(logits, labels)
|
1799 |
-
if not return_dict:
|
1800 |
-
output = (logits,) + outputs[2:]
|
1801 |
-
return ((loss,) + output) if loss is not None else output
|
1802 |
-
|
1803 |
-
return SequenceClassifierOutput(
|
1804 |
-
loss=loss,
|
1805 |
-
logits=logits,
|
1806 |
-
hidden_states=outputs.hidden_states,
|
1807 |
-
attentions=outputs.attentions,
|
1808 |
-
)
|
1809 |
-
|
1810 |
-
def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
|
1811 |
-
return GPT2Config(
|
1812 |
-
n_embd=vit_config.hidden_size,
|
1813 |
-
n_layer=vit_config.num_hidden_layers,
|
1814 |
-
n_head=vit_config.num_attention_heads,
|
1815 |
-
n_inner=vit_config.intermediate_size,
|
1816 |
-
activation_function=vit_config.hidden_act,
|
1817 |
-
vocab_size=0, # no vocab since using patches
|
1818 |
-
n_positions=0, # No absolute position embedding
|
1819 |
-
resid_pdrop=0.0, # No dropout
|
1820 |
-
embd_pdrop=getattr(vit_config, "dropout", 0.0),
|
1821 |
-
attn_pdrop=vit_config.attention_probs_dropout_prob,
|
1822 |
-
layer_norm_epsilon=vit_config.layer_norm_eps,
|
1823 |
-
initializer_range=vit_config.initializer_range,
|
1824 |
-
bos_token_id=None,
|
1825 |
-
eos_token_id=None,
|
1826 |
-
# These are new arguments not in the original GPT2Config
|
1827 |
-
drop_path_rate=0.0,
|
1828 |
-
# Why is there double layer norm??
|
1829 |
-
prepre_layernom=False,
|
1830 |
-
layer_scale=False,
|
1831 |
-
layer_scale_init=None,
|
1832 |
-
img_size=vit_config.image_size,
|
1833 |
-
patch_size=vit_config.patch_size,
|
1834 |
-
num_channels=vit_config.num_channels,
|
1835 |
-
prenorm=True,
|
1836 |
-
parallel_block=False,
|
1837 |
-
parallel_block_tied_norm=False,
|
1838 |
-
rotary_emb_fraction=0,
|
1839 |
-
tie_word_embeddings=False,
|
1840 |
-
fused_dropout_add_ln=True,
|
1841 |
-
fused_bias_fc=True,
|
1842 |
-
patch_embed_bias=True,
|
1843 |
-
use_flash_attn=True,
|
1844 |
-
qkv_proj_bias=True,
|
1845 |
-
mlp_fc1_bias=getattr(vit_config, "mlp_fc1_bias", True),
|
1846 |
-
mlp_fc2_bias=getattr(vit_config, "mlp_fc2_bias", True),
|
1847 |
-
use_rms_norm=False,
|
1848 |
-
causal=False,
|
1849 |
-
hidden_features_scaling_factor=1.0,
|
1850 |
-
mask_token=False,
|
1851 |
-
learned_pos_embedding=False,
|
1852 |
-
patch_dropout=0,
|
1853 |
-
sinusoidal_pos_embedding=vit_config.model_type == "vit_mae"
|
1854 |
-
)
|
1855 |
-
|
1856 |
-
|
1857 |
-
class NomicAttentionPooling(nn.Module):
|
1858 |
-
def __init__(
|
1859 |
-
self,
|
1860 |
-
config
|
1861 |
-
):
|
1862 |
-
super().__init__()
|
1863 |
-
self.embed_dim = config.n_embd
|
1864 |
-
self.use_flash_attn = config.use_flash_attn
|
1865 |
-
self.fused_bias_fc = config.fused_bias_fc
|
1866 |
-
|
1867 |
-
self.num_heads = config.n_head
|
1868 |
-
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
1869 |
-
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
1870 |
-
self.head_dim = self.embed_dim // self.num_heads
|
1871 |
-
# we don't really support mqa / gqa for now
|
1872 |
-
kv_dim = 2 * self.head_dim * self.num_heads_kv
|
1873 |
-
|
1874 |
-
self.register_buffer(
|
1875 |
-
"norm_factor",
|
1876 |
-
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
1877 |
-
persistent=False,
|
1878 |
-
)
|
1879 |
-
|
1880 |
-
self.Wq = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
1881 |
-
self.Wkv = nn.Linear(self.embed_dim, kv_dim, bias=config.qkv_proj_bias)
|
1882 |
-
|
1883 |
-
self.latent = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
1884 |
-
|
1885 |
-
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
1886 |
-
self.causal = config.causal
|
1887 |
-
self.drop = nn.Dropout(config.attn_pdrop)
|
1888 |
-
|
1889 |
-
def init_weights(self):
|
1890 |
-
trunc_normal_tf_(self.latent, std=self.embed_dim ** -0.5)
|
1891 |
-
|
1892 |
-
def forward(
|
1893 |
-
self,
|
1894 |
-
kv,
|
1895 |
-
attention_mask=None,
|
1896 |
-
cu_seqlens_k=None,
|
1897 |
-
max_seqlen_k=None,
|
1898 |
-
is_padded_inputs: Optional[bool] = True,
|
1899 |
-
output_attentions: bool = False,
|
1900 |
-
):
|
1901 |
-
"""Implements the multihead softmax attention.
|
1902 |
-
Arguments
|
1903 |
-
---------
|
1904 |
-
q: The tensor containing the query. (B, Sq, H, D)
|
1905 |
-
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
1906 |
-
causal: if passed, will override self.causal
|
1907 |
-
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1908 |
-
of the sequences in the batch, used to index into q.
|
1909 |
-
max_seqlen: int. Maximum sequence length in the batch of q.
|
1910 |
-
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1911 |
-
of the sequences in the batch, used to index into kv.
|
1912 |
-
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
1913 |
-
"""
|
1914 |
-
q_latent = self.latent.expand(kv.size(0), -1, -1)
|
1915 |
-
q = self.Wq(q_latent)
|
1916 |
-
bsz, q_len, h_size = q.shape
|
1917 |
-
kv = self.Wkv(kv)
|
1918 |
-
query = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
1919 |
-
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
1920 |
-
|
1921 |
-
key, value = kv[:, :, 0], kv[:, :, 1]
|
1922 |
-
|
1923 |
-
query = query.permute(0, 2, 1, 3)
|
1924 |
-
key = key.permute(0, 2, 1, 3)
|
1925 |
-
value = value.permute(0, 2, 1, 3)
|
1926 |
-
|
1927 |
-
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
1928 |
-
if attention_mask is not None:
|
1929 |
-
attention_scores = attention_scores + attention_mask
|
1930 |
-
|
1931 |
-
attentions_probs = F.softmax(attention_scores, dim=-1)
|
1932 |
-
attentions_probs = self.drop(attentions_probs)
|
1933 |
-
|
1934 |
-
attn_output = torch.matmul(attentions_probs, value)
|
1935 |
-
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
1936 |
-
|
1937 |
-
attn_output = self.out_proj(attn_output)
|
1938 |
-
|
1939 |
-
return attn_output
|
1940 |
-
|
1941 |
-
|
1942 |
-
class NomicMultiHeadAttentionPooling(nn.Module):
|
1943 |
-
def __init__(
|
1944 |
-
self,
|
1945 |
-
config,
|
1946 |
-
):
|
1947 |
-
super().__init__()
|
1948 |
-
self.prenorm = config.prenorm
|
1949 |
-
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
1950 |
-
|
1951 |
-
self.attn = NomicAttentionPooling(config)
|
1952 |
-
activation = (
|
1953 |
-
F.sigmoid
|
1954 |
-
if config.activation_function == "glu"
|
1955 |
-
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
1956 |
-
)
|
1957 |
-
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
1958 |
-
self.mlp = NomciBertGatedMLP(
|
1959 |
-
config.n_embd,
|
1960 |
-
hidden_features=config.n_inner,
|
1961 |
-
bias1=config.mlp_fc1_bias,
|
1962 |
-
bias2=config.mlp_fc2_bias,
|
1963 |
-
activation=activation,
|
1964 |
-
fused_bias_fc=config.fused_bias_fc,
|
1965 |
-
)
|
1966 |
-
else:
|
1967 |
-
self.mlp = NomicBertMLP(
|
1968 |
-
config.n_embd,
|
1969 |
-
hidden_features=config.n_inner,
|
1970 |
-
bias1=config.mlp_fc1_bias,
|
1971 |
-
bias2=config.mlp_fc2_bias,
|
1972 |
-
activation=activation,
|
1973 |
-
fused_bias_fc=config.fused_bias_fc,
|
1974 |
-
)
|
1975 |
-
|
1976 |
-
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
1977 |
-
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1978 |
-
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
1979 |
-
|
1980 |
-
def forward(
|
1981 |
-
self,
|
1982 |
-
hidden_states: torch.Tensor,
|
1983 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1984 |
-
):
|
1985 |
-
r"""Pass the input through the encoder layer.
|
1986 |
-
|
1987 |
-
Args:
|
1988 |
-
hidden_states: the sequence to the encoder layer (required).
|
1989 |
-
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
1990 |
-
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
1991 |
-
before applying the query projection. Useful for e.g., ViT where we only care
|
1992 |
-
about the CLS token in the last layer.
|
1993 |
-
"""
|
1994 |
-
|
1995 |
-
attn_outputs = self.attn(
|
1996 |
-
hidden_states,
|
1997 |
-
attention_mask=attention_mask,
|
1998 |
-
)
|
1999 |
-
|
2000 |
-
normed = self.norm1(attn_outputs)
|
2001 |
-
hidden_states = hidden_states + self.mlp(normed)
|
2002 |
-
|
2003 |
-
return hidden_states
|
2004 |
-
|
2005 |
-
class NomicVisionPreTrainedModel(PreTrainedModel):
|
2006 |
-
"""An abstract class to handle weights initialization and
|
2007 |
-
a simple interface for dowloading and loading pretrained models.
|
2008 |
-
"""
|
2009 |
-
|
2010 |
-
config_class = NomicBertConfig
|
2011 |
-
base_model_prefix = "model"
|
2012 |
-
supports_gradient_checkpointing = True
|
2013 |
-
_no_split_modules = ["Block"]
|
2014 |
-
_skip_keys_device_placement = "past_key_values"
|
2015 |
-
|
2016 |
-
def __init__(self, config, *inputs, **kwargs):
|
2017 |
-
super().__init__(config)
|
2018 |
-
if not isinstance(config, GPT2Config):
|
2019 |
-
raise ValueError(
|
2020 |
-
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
2021 |
-
"To create a model from a Google pretrained model use "
|
2022 |
-
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
2023 |
-
self.__class__.__name__, self.__class__.__name__
|
2024 |
-
)
|
2025 |
-
)
|
2026 |
-
self.config = config
|
2027 |
-
|
2028 |
-
class NomicVisionModel(NomicVisionPreTrainedModel):
|
2029 |
-
def __init__(self, config):
|
2030 |
-
super().__init__(config)
|
2031 |
-
|
2032 |
-
self.embeddings = NomicVisionPatchEmbeddings(config)
|
2033 |
-
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
2034 |
-
|
2035 |
-
self.selector = NomicMultiHeadAttentionPooling(config)
|
2036 |
-
|
2037 |
-
self.global_pool = getattr(config, "global_pool", None)
|
2038 |
-
self.num_prefix_tokens = (1 if not getattr(config, "no_cls_token", False) else 0) + getattr(config, "register_tokens", 0)
|
2039 |
-
|
2040 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
2041 |
-
|
2042 |
-
def forward(
|
2043 |
-
self,
|
2044 |
-
pixel_values,
|
2045 |
-
attention_mask=None,
|
2046 |
-
position_ids=None,
|
2047 |
-
token_type_ids=None,
|
2048 |
-
return_dict=None,
|
2049 |
-
matryoshka_dim=None,
|
2050 |
-
):
|
2051 |
-
embeddings, rope = self.embeddings(pixel_values)
|
2052 |
-
|
2053 |
-
original_dtype = embeddings.dtype
|
2054 |
-
|
2055 |
-
hidden_states = embeddings
|
2056 |
-
# unused but easier to pass to gradient checkpointing as words
|
2057 |
-
residual = None
|
2058 |
-
for layer in self.layers:
|
2059 |
-
# need to pass none for backwards compatability
|
2060 |
-
hidden_states, _, residual = layer(hidden_states, None, residual=residual, is_padded_inputs=False, rope=rope)
|
2061 |
-
|
2062 |
-
hidden_states = hidden_states + residual
|
2063 |
-
if self.global_pool == "avg":
|
2064 |
-
hidden_states = hidden_states[:, self.num_prefix_tokens:].mean(dim=1)
|
2065 |
-
|
2066 |
-
pooled_output = self.selector(hidden_states)
|
2067 |
-
|
2068 |
-
return BaseModelOutputWithPast(
|
2069 |
-
last_hidden_state=pooled_output,
|
2070 |
-
hidden_states=hidden_states,
|
2071 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|