File size: 1,884 Bytes
022e5e2
80cb67e
 
022e5e2
 
 
 
 
 
 
80cb67e
022e5e2
 
80cb67e
 
022e5e2
b40530e
022e5e2
 
 
 
 
 
 
b40530e
022e5e2
 
 
 
 
80cb67e
022e5e2
b40530e
022e5e2
b40530e
 
022e5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cb67e
022e5e2
 
 
 
 
80cb67e
 
 
022e5e2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- wikitext
metrics:
- accuracy
model-index:
- name: mlm
  results:
  - task:
      name: Masked Language Modeling
      type: fill-mask
    dataset:
      name: wikitext wikitext-2-raw-v1
      type: wikitext
      config: wikitext-2-raw-v1
      split: validation
      args: wikitext-2-raw-v1
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7302927161334241
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mlm

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the wikitext wikitext-2-raw-v1 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2468
- Accuracy: 0.7303

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3758        | 1.0   | 150  | 1.2826          | 0.7277   |
| 1.3763        | 2.0   | 300  | 1.2747          | 0.7272   |
| 1.3558        | 3.0   | 450  | 1.2607          | 0.7278   |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3