--- library_name: transformers language: - th license: apache-2.0 base_model: openai/whisper-large tags: - asr - speech-recognition - thai - custom-model - generated_from_trainer metrics: - wer model-index: - name: Whisper Large TH - Nonhmello results: [] --- # Whisper Large TH - Nonhmello This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Custom dataset on local machine dataset. It achieves the following results on the evaluation set: - Loss: 0.3642 - Wer: 50.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:----:| | 0.0 | 400.0 | 400 | 0.3334 | 50.0 | | 0.0 | 800.0 | 800 | 0.3642 | 50.0 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3