--- library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: emissions-extraction-lora results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: nopperl/sustainability-report-emissions-instruction-style type: system_prompt: "" field_instruction: prompt field_output: completion format: "[INST] {instruction} [/INST] I have extracted the Scope 1, 2 and 3 emission values from the document, converted them into metric tons and put them into the following json object:\n```json\n" no_input_format: "[INST] {instruction} [/INST] I have extracted the Scope 1, 2 and 3 emission values from the document, converted them into metric tons and put them into the following json object:\n```json\n" dataset_prepared_path: val_set_size: 0 output_dir: ./emissions-extraction-lora adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj sequence_len: 32768 sample_packing: false pad_to_sequence_len: false eval_sample_packing: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 0 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: train_config/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" save_safetensors: true ```

# emissions-extraction-lora This is a LoRA for the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model finetuned on the [nopperl/sustainability-report-emissions-instruction-style](https://huggingface.co/datasets/nopperl/sustainability-report-emissions-instruction-style) dataset. ## Model description Given text extracted from pages of a sustainability report, this model extracts the scope 1, 2 and 3 emissions in JSON format. The JSON object also contains the pages containing this information. For example, the [2022 sustainability report by the Bristol-Myers Squibb Company](https://www.bms.com/assets/bms/us/en-us/pdf/bmy-2022-esg-report.pdf) leads to the following output: `{"scope_1":202290,"scope_2":161907,"scope_3":1696100,"sources":[88,89]}`. For more information, refer to the [GitHub repo](https://github.com/nopperl/corporate_emission_reports). ## Intended uses & limitations The model is intended to be used together with the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model using the `inference.py` script from the [GitHub repo](https://github.com/nopperl/corporate_emission_reports). The script ensures that the prompt string and token ids exactly match the ones used for training. Example usage: python inference.py --model mistral --lora emissions-extraction-lora/ggml-adapter-model.bin https://www.bms.com/assets/bms/us/en-us/pdf/bmy-2022-esg-report.pdf Compare to base model without LoRA: python inference.py --model mistral https://www.bms.com/assets/bms/us/en-us/pdf/bmy-2022-esg-report.pdf ## Training and evaluation data Finetuned on the [sustainability-report-emissions-instruction-style](https://huggingface.co/datasets/nopperl/sustainability-report-emissions-instruction-style) dataset. Reaches an emission value extraction accuracy of 57\% (up from 46\% of the base model) and a source citation accuracy of 68\% (base model: 52\%) on the [corporate-emission-reports](https://huggingface.co/datasets/nopperl/corporate-emission-reports) dataset. ## Training procedure Trained on two A40 GPUs with ZeRO Stage 3 and FlashAttention 2. ZeRO-3 and FlashAttention 2 are necessary to just barely fit the sequence length of 32768 (without them, the max sequence length was 6144). The bloat16 datatype (and no quantization) was used. One epoch took roughly 3 hours. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.37.1 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0